Publications by authors named "Catherine Lindon"

Aurora kinase A (AURKA) is a major regulator of the cell cycle. A prominent association exists between high expression of AURKA and cancer, and impairment of AURKA levels can trigger its oncogenic activity. In order to explore the contribution of post-transcriptional regulation to AURKA expression in different cancers, we carried out a meta-analysis of -omics data of 18 cancer types from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

The study of translation is important to the understanding of gene expression. While genome-wide measurements of translation efficiency (TE) rely upon ribosome profiling, classical approaches to address translation of individual genes of interest rely on biochemical methods, such as polysome fractionation and immunoprecipitation (IP) of ribosomal components, or on reporter constructs, such as luciferase reporters. Methods to investigate translation have been developed that, however, require considerable research effort, including addition of numerous features to mRNA regions, genomic integration of reporters, and complex data analysis.

View Article and Find Full Text PDF

Aurora Kinase A (AURKA) is an oncogenic kinase with major roles in mitosis, but also exerts cell cycle- and kinase-independent functions linked to cancer. Therefore, control of its expression, as well as its activity, is crucial. A short and a long 3'UTR isoform exist for AURKA mRNA, resulting from alternative polyadenylation (APA).

View Article and Find Full Text PDF

The AurkA kinase is a well-known mitotic regulator, frequently overexpressed in tumors. The microtubule-binding protein TPX2 controls AurkA activity, localization, and stability in mitosis. Non-mitotic roles of AurkA are emerging, and increased nuclear localization in interphase has been correlated with AurkA oncogenic potential.

View Article and Find Full Text PDF

Mitotic kinase Aurora A (AURKA) diverges from other kinases in its multiple active conformations that may explain its interphase roles and the limited efficacy of drugs targeting the kinase pocket. Regulation of AURKA activity by the cell is critically dependent on destruction mediated by the anaphase-promoting complex (APC/C) during mitotic exit and G1 phase and requires an atypical N-terminal degron in AURKA called the "A-box" in addition to a reported canonical D-box degron in the C-terminus. Here, we find that the reported C-terminal D-box of AURKA does not act as a degron and instead mediates essential structural features of the protein.

View Article and Find Full Text PDF

Aurora Kinase A (AURKA) is a positive regulator of mitosis with a strict cell cycle-dependent expression pattern. Recently, novel oncogenic roles of AURKA have been uncovered that are independent of the kinase activity and act within multiple signalling pathways, including cell proliferation, survival and cancer stem cell phenotypes. For this, cellular abundance of AURKA protein is crucial and must be tightly fine-tuned.

View Article and Find Full Text PDF

The cell cycle is tightly regulated by protein phosphorylation and ubiquitylation events. During mitosis, the multi-subunit cullin-RING E3 ubiquitin ligase APC/c functions as a molecular switch which signals for one cell to divide into two daughter cells, through the ubiquitylation and proteasomal degradation of mitotic cyclins. The contributions of other E3 ligase families during cell cycle progression remain less well understood.

View Article and Find Full Text PDF

E3s comprise a structurally diverse group of at least 800 members, most of which target multiple substrates through specific and regulated protein-protein interactions. These interactions typically rely on short linear motifs (SLiMs), called "degrons", in an intrinsically disordered region (IDR) of the substrate, with variable rules of engagement governing different E3-docking events. These rules of engagement are of importance to the field of targeted protein degradation (TPD), where substrate ubiquitination and destruction require tools to effectively harness ubiquitin ligases (E3s).

View Article and Find Full Text PDF

Neuroblastoma is a severe childhood disease, accounting for ~10% of all infant cancers. The amplification of the MYCN gene, coding for the N-Myc transcription factor, is an essential marker correlated with tumor progression and poor prognosis. In neuroblastoma cells, the mitotic kinase Aurora-A (AURKA), also frequently overexpressed in cancer, prevents N-Myc degradation by directly binding to a highly conserved N-Myc region.

View Article and Find Full Text PDF

Targeted protein degradation tools are becoming a new therapeutic modality, allowing small molecule ligands to be reformulated as heterobifunctional molecules (PROteolysis Targeting Chimeras, PROTACs) that recruit ubiquitin ligases to targets of interest, leading to ubiquitination and destruction of the targets. Several PROTACs against targets of clinical interest have been described, but detailed descriptions of the cell biology modulated by PROTACs are missing from the literature. Here we describe the functional characterization of a PROTAC derived from AURKA inhibitor MLN8237 (alisertib).

View Article and Find Full Text PDF

The Aurora-A kinase regulates cell division, by controlling centrosome biology and spindle assembly. Cancer cells often display elevated levels of the kinase, due to amplification of the gene locus, increased transcription or post-translational modifications. Several inhibitors of Aurora-A activity have been developed as anti-cancer agents and are under evaluation in clinical trials.

View Article and Find Full Text PDF

Polyploidy is present in many cancer types and is increasingly recognized as an important factor in promoting chromosomal instability, genome evolution, and heterogeneity in cancer cells. However, the mechanisms that trigger polyploidy in cancer cells are largely unknown. In this study, we investigated the origin of polyploidy in esophageal adenocarcinoma (EAC), a highly heterogenous cancer, using a combination of genomics and cell biology approaches in EAC cell lines, organoids, and tumors.

View Article and Find Full Text PDF

Aurora B kinase plays essential roles in mitosis. Its protein levels increase before the onset of mitosis and sharply decrease during mitosis exit. The latter decrease is due to a balance between the actions of the E3 ubiquitin ligase anaphase-promoting complex or cyclosome (activated by the Cdh1 adapter), and the deubiquitinating enzyme USP35.

View Article and Find Full Text PDF

Activity of AURKA is controlled through multiple mechanisms including phosphorylation, ubiquitin-mediated degradation and allosteric interaction with TPX2. Activity peaks at mitosis, before AURKA is degraded during and after mitotic exit in a process strictly dependent on the APC/C coactivator FZR1. We used FZR1 knockout cells (FZR1) and a novel FRET-based AURKA biosensor to investigate how AURKA activity is regulated in the absence of destruction.

View Article and Find Full Text PDF

The microtubule-associated protein TPX2 is a key mitotic regulator that contributes through distinct pathways to spindle assembly. A well-characterised function of TPX2 is the activation, stabilisation and spindle localisation of the Aurora-A kinase. High levels of TPX2 are reported in tumours and the effects of its overexpression have been investigated in cancer cell lines, while little is known in non-transformed cells.

View Article and Find Full Text PDF

Aurora A kinase (AURKA) is a major regulator of mitosis and an important driver of cancer progression. The roles of AURKA outside of mitosis, and how these might contribute to cancer progression, are not well understood. Here, we show that a fraction of cytoplasmic AURKA is associated with mitochondria, co-fractionating in cell extracts and interacting with mitochondrial proteins by reciprocal co-immunoprecipitation.

View Article and Find Full Text PDF

Ubiquitination pathways are widely used within eukaryotic cells. The complexity of ubiquitin signaling gives rise to a number of problems in the study of specific pathways. One problem is that not all processes regulated by ubiquitin are shared among the different cells of an organism (e.

View Article and Find Full Text PDF

The Aurora kinases are essential regulators of mitosis in eukaryotes. In somatic cell divisions of higher eukaryotes, the paralogs Aurora kinase A (AurA) and Aurora kinase B (AurB) play non-overlapping roles that depend on their distinct spatiotemporal activities. These mitotic roles of Aurora kinases depend on their interactions with different partners that direct them to different mitotic destinations and different substrates: AurB is a component of the chromosome passenger complex that orchestrates the tasks of chromosome segregation and cytokinesis, while AurA has many known binding partners and mitotic roles, including a well-characterized interaction with TPX2 that mediates its role in mitotic spindle assembly.

View Article and Find Full Text PDF

The ubiquitin proteasome system (UPS) directs programmed destruction of key cellular regulators via posttranslational modification of its targets with polyubiquitin chains. These commonly contain Lys-48 (K48)-directed ubiquitin linkages, but chains containing atypical Lys-11 (K11) linkages also target substrates to the proteasome--for example, to regulate cell cycle progression. The ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C) controls mitotic exit.

View Article and Find Full Text PDF

The ability to identify protein interactions is key to elucidating the molecular mechanisms of cellular processes, including mitosis and cell cycle regulation. Drosophila melanogaster, as a model system, provides powerful tools to study cell division using genetics, microscopy, and RNAi. Drosophila early embryos are highly enriched in mitotic protein complexes as their nuclei undergo 13 rounds of rapid, synchronous mitotic nuclear divisions in a syncytium during the first 2 h of development.

View Article and Find Full Text PDF

Mitotic division requires highly regulated morphological and biochemical changes to the cell. Upon commitment to exit mitosis, cells begin to remove mitotic regulators in a temporally and spatially controlled manner to bring about the changes that reestablish interphase. Ubiquitin-dependent pathways target these regulators to generate polyubiquitin-tagged substrates for degradation by the 26S proteasome.

View Article and Find Full Text PDF

Ordered progression of mitosis requires precise control in abundance of mitotic regulators. The anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase plays a key role by directing ubiquitin-mediated destruction of targets in a temporally and spatially defined manner. Specificity in APC/C targeting is conferred through recognition of substrate D-box and KEN degrons, while the specificity of ubiquitination sites, as another possible regulated dimension, has not yet been explored.

View Article and Find Full Text PDF

Spatiotemporal regulation of mitotic kinase activity underlies the extensive rearrangement of cellular components required for cell division. One highly dynamic mitotic kinase is Aurora-B (AurB), which has multiple roles defined by the changing localisation of the chromosome passenger complex (CPC) as cells progress through mitosis, including regulation of cytokinesis and abscission. Like other mitotic kinases, AurB is a target of the anaphase-promoting complex (APC/C) ubiquitin ligase during mitotic exit, but it is not known if APC/C-mediated destruction plays any specific role in controlling AurB activity.

View Article and Find Full Text PDF

Both cell cycle progression and the ubiquitin-proteasome system (UPS) that drives it are precisely regulated. Enzymatically, many ubiquitylation and degradation reactions have been characterized in in vitro systems, providing insights into the fundamental mechanisms of the UPS. Biologically, a range of degradation events depending on a ubiquitin ligase called the Anaphase-Promoting Complex (APC/C), have been shown to control mitotic progression through removal of key substrates with extreme temporal precision.

View Article and Find Full Text PDF

The Aurora-A kinase has well-established roles in spindle assembly and function and is frequently overexpressed in tumours. Its abundance is cell cycle regulated, with a peak in G2 and M phases, followed by regulated proteolysis at the end of mitosis. The microtubule-binding protein TPX2 plays a major role in regulating the activity and localisation of Aurora-A in mitotic cells.

View Article and Find Full Text PDF