Publications by authors named "Catherine Lawson"

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, RCSB.org), the US Worldwide Protein Data Bank (wwPDB, wwPDB.org) data center for the global PDB archive, provides access to the PDB data via its RCSB.

View Article and Find Full Text PDF
Article Synopsis
  • This project analyzed if cranial ischaemic complications in giant cell arteritis (GCA) patients were linked to existing cardiovascular (CV) risk factors, CV diseases, or genetic predispositions.
  • The study examined data from 1946 GCA patients, finding that 17% had cranial ischaemic issues, with significant factors including age (especially those ≥80) and hypertension, while anticoagulant therapy seemed to reduce risk.
  • The research indicated potential genetic factors affecting CV-related traits and suggested that immune and coagulation pathways may play a role in these complications, warranting further investigation before applying findings to clinical settings.
View Article and Find Full Text PDF

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution.

View Article and Find Full Text PDF

Background: Anti-MDA5 (Melanoma differentiation-associated protein-5) positive dermatomyositis (MDA5-DM) is characterised by rapidly progressive interstitial lung disease (ILD) and high mortality. MDA5 is an RNA sensor and a key pattern recognition receptor for the SARS-CoV-2 virus.

Methods: This is a retrospective observational study of a surge in MDA5 autoimmunity, as determined using a 15 muscle-specific autoantibodies (MSAs) panel, between Janurary 2018 and December 2022 in Yorkshire, UK.

View Article and Find Full Text PDF

IHMCIF (github.com/ihmwg/IHMCIF) is a data information framework that supports archiving and disseminating macromolecular structures determined by integrative or hybrid modeling (IHM), and making them Findable, Accessible, Interoperable, and Reusable (FAIR). IHMCIF is an extension of the Protein Data Bank Exchange/macromolecular Crystallographic Information Framework (PDBx/mmCIF) that serves as the framework for the Protein Data Bank (PDB) to archive experimentally determined atomic structures of biological macromolecules and their complexes with one another and small molecule ligands (e.

View Article and Find Full Text PDF
Article Synopsis
  • In January 2020, a workshop at EMBL-EBI focused on data needs for cryoEM structure deposition and validation, specifically in single-particle analysis.
  • The workshop gathered 47 experts to discuss data processing, model building, validation, and archiving, leading to consensus recommendations.
  • The report outlines the workshop's goals, key discussions, challenges for future methods, and the progress made on implementing the recommendations.
View Article and Find Full Text PDF

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution.

View Article and Find Full Text PDF
Article Synopsis
  • - A workshop at EMBL-EBI in January 2020 brought together 47 experts to discuss data needs for cryoEM structures, focusing particularly on single-particle analysis.
  • - The report outlines the workshop's purpose, the discussions held, and the consensus recommendations made by the attendees.
  • - It also highlights future challenges in method development and notes the progress made on implementing some of the recommendations discussed.
View Article and Find Full Text PDF

Background: Anti-MDA5 (Melanoma differentiation-associated protein-5) positive dermatomyositis (MDA5 -DM) is characterised by rapidly progressive interstitial lung disease (ILD) and high mortality. MDA5 senses single-stranded RNA and is a key pattern recognition receptor for the SARS-CoV-2 virus.

Methods: This is a retrospective observational study of a surge in MDA5 autoimmunity, as determined using a 15 muscle-specific autoantibodies (MSAs) panel, between Janurary 2018-December 2022 in Yorkshire, UK.

View Article and Find Full Text PDF

The Nucleic Acid Knowledgebase (nakb.org) is a new data resource, updated weekly, for experimentally determined 3D structures containing DNA and/or RNA nucleic acid polymers and their biological assemblies. NAKB indexes nucleic acid-containing structures derived from all major structure determination methods (X-ray, NMR and EM), including all held by the Protein Data Bank (PDB).

View Article and Find Full Text PDF

As a discipline, structural biology has been transformed by the three-dimensional electron microscopy (3DEM) "Resolution Revolution" made possible by convergence of robust cryo-preservation of vitrified biological materials, sample handling systems, and measurement stages operating a liquid nitrogen temperature, improvements in electron optics that preserve phase information at the atomic level, direct electron detectors (DEDs), high-speed computing with graphics processing units, and rapid advances in data acquisition and processing software. 3DEM structure information (atomic coordinates and related metadata) are archived in the open-access Protein Data Bank (PDB), which currently holds more than 11,000 3DEM structures of proteins and nucleic acids, and their complexes with one another and small-molecule ligands (~ 6% of the archive). Underlying experimental data (3DEM density maps and related metadata) are stored in the Electron Microscopy Data Bank (EMDB), which currently holds more than 21,000 3DEM density maps.

View Article and Find Full Text PDF

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), founding member of the Worldwide Protein Data Bank (wwPDB), is the US data center for the open-access PDB archive. As wwPDB-designated Archive Keeper, RCSB PDB is also responsible for PDB data security. Annually, RCSB PDB serves >10 000 depositors of three-dimensional (3D) biostructures working on all permanently inhabited continents.

View Article and Find Full Text PDF

Now in its 52nd year of continuous operations, the Protein Data Bank (PDB) is the premiere open-access global archive housing three-dimensional (3D) biomolecular structure data. It is jointly managed by the Worldwide Protein Data Bank (wwPDB) partnership. The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) is funded by the National Science Foundation, National Institutes of Health, and US Department of Energy and serves as the US data center for the wwPDB.

View Article and Find Full Text PDF

PDBx/mmCIF, Protein Data Bank Exchange (PDBx) macromolecular Crystallographic Information Framework (mmCIF), has become the data standard for structural biology. With its early roots in the domain of small-molecule crystallography, PDBx/mmCIF provides an extensible data representation that is used for deposition, archiving, remediation, and public dissemination of experimentally determined three-dimensional (3D) structures of biological macromolecules by the Worldwide Protein Data Bank (wwPDB, wwpdb.org).

View Article and Find Full Text PDF

In this review, we describe the creation of the Nucleic Acid Database (NDB) at Rutgers University and how it became a testbed for the current infrastructure of the RCSB Protein Data Bank. We describe some of the special features of the NDB and how it has been used to enable research. Plans for the next phase as the Nucleic Acid Knowledgebase (NAKB) are summarized.

View Article and Find Full Text PDF

Structures of many complex biological assemblies are increasingly determined using integrative approaches, in which data from multiple experimental methods are combined. A standalone system, called PDB-Dev, has been developed for archiving integrative structures and making them publicly available. Here, the data standards and software tools that support PDB-Dev are described along with the new and updated components of the PDB-Dev data-collection, processing and archiving infrastructure.

View Article and Find Full Text PDF

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), funded by the US National Science Foundation, National Institutes of Health, and Department of Energy, has served structural biologists and Protein Data Bank (PDB) data consumers worldwide since 1999. RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partnership, is the US data center for the global PDB archive housing biomolecular structure data. RCSB PDB is also responsible for the security of PDB data, as the wwPDB-designated Archive Keeper.

View Article and Find Full Text PDF

The crystal structures of domain-swapped tryptophan repressor (TrpR) variant Val58Ile before and after soaking with the physiological ligand L-tryptophan (L-Trp) indicate that L-Trp occupies the same location in the domain-swapped form as in native dimeric TrpR and makes equivalent residue contacts. This result is unexpected because the ligand binding-site residues arise from three separate polypeptide chains in the domain-swapped form. This work represents the first published structure of a domain-swapped form of TrpR with L-Trp bound.

View Article and Find Full Text PDF

Soaking small molecules into the solvent channels of protein crystals is the most common method of obtaining crystalline complexes with ligands such as substrates or inhibitors. The solvent channels of some protein crystals are large enough to allow the incorporation of macromolecules, but soaking of protein guests into protein crystals has not been reported. Such protein host crystals (here given the name hostals) incorporating guest proteins may be useful for a wide range of applications in biotechnology, for example as cargo systems or for diffraction studies analogous to the crystal sponge method.

View Article and Find Full Text PDF

Cryogenic electron microscopy (cryo-EM) methods began to be used in the mid-1970s to study thin and periodic arrays of proteins. Following a half-century of development in cryo-specimen preparation, instrumentation, data collection, data processing, and modeling software, cryo-EM has become a routine method for solving structures from large biological assemblies to small biomolecules at near to true atomic resolution. This review explores the critical roles played by the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in partnership with the community to develop the necessary infrastructure to archive cryo-EM maps and associated models.

View Article and Find Full Text PDF
Article Synopsis
  • - The paper discusses the 2019 Cryo-EM Model Challenge, which aimed to evaluate the quality, reproducibility, and performance of modeling software for cryogenic electron microscopy maps.
  • - The study found that 13 teams produced cryo-EM models with high accuracy across different resolutions (1.8 to 3.1 Å), demonstrating good reproducibility of results.
  • - The authors recommend using multiple scoring parameters for validating near-atomic cryo-EM structures to ensure thorough and objective assessment in line with observed map density.
View Article and Find Full Text PDF

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB), the US data center for the global PDB archive and a founding member of the Worldwide Protein Data Bank partnership, serves tens of thousands of data depositors in the Americas and Oceania and makes 3D macromolecular structure data available at no charge and without restrictions to millions of RCSB.org users around the world, including >660 000 educators, students and members of the curious public using PDB101.RCSB.

View Article and Find Full Text PDF

We demonstrate here that the α subunit C-terminal domain of RNA polymerase (αCTD) recognizes the upstream promoter (UP) DNA element via its characteristic minor groove shape and electrostatic potential. In two compositionally distinct crystallized assemblies, a pair of αCTD subunits bind in tandem to the UP element consensus A-tract that is 6 bp in length (A-tract), each with their arginine 265 guanidinium group inserted into the minor groove. The A-tract minor groove is significantly narrowed in these crystal structures, as well as in computationally predicted structures of free and bound DNA duplexes derived by Monte Carlo and molecular dynamics simulations, respectively.

View Article and Find Full Text PDF

The Protein Data Bank (PDB) has grown from a small data resource for crystallographers to a worldwide resource serving structural biology. The history of the growth of the PDB and the role that the community has played in developing standards and policies are described. This article also illustrates how other biophysics communities are collaborating with the worldwide PDB to create a network of interoperating data resources.

View Article and Find Full Text PDF