The microgravity environment aboard the International Space Station (ISS) provides a unique stressor that can help understand underlying cellular and molecular drivers of pathological changes observed in astronauts with the ultimate goals of developing strategies to enable long- term spaceflight and better treatment of diseases on Earth. We used this unique environment to evaluate the effects of microgravity on kidney proximal tubule epithelial cell (PTEC) response to serum exposure and vitamin D biotransformation capacity. To test if microgravity alters the pathologic response of the proximal tubule to serum exposure, we treated PTECs cultured in a microphysiological system (PT-MPS) with human serum and measured biomarkers of toxicity and inflammation (KIM-1 and IL-6) and conducted global transcriptomics via RNAseq on cells undergoing flight (microgravity) and respective controls (ground).
View Article and Find Full Text PDFDetermining the physiological effects of microgravity on the human kidney is limited to relatively insensitive tests of biofluids (blood and urine) that do not return abnormal results until more than 50% of kidney function is lost. We have developed an "organ on chip" microphysiological model of the human kidney proximal tubule (PT-MPS) that can recapitulate many kidney functions and disease states and could play a critical role in determining mechanisms of early kidney dysfunction in microgravity. However, the ground-based PT-MPS system is incompatible with spaceflight as it requires a large pneumatic system coupled to a cell incubator for perfusion and intensive hand-on manipulation.
View Article and Find Full Text PDFKidney function-adjusted drug dosing is currently based solely on the estimated glomerular filtration rate (GFR), however, kidney drug handling is accomplished by a combination of filtration, tubular secretion, and re-absorption. Mechanistic physiologically-based pharmacokinetic (PBPK) models recapitulate anatomic compartments to predict elimination from estimated perfusion, filtration, secretion, and re-absorption, but clinical applications are limited by a lack of empiric individual-level measurements of these functions. We adapted and validated a PBPK model to predict drug clearance from individual biomarker-based estimates of kidney perfusion and secretory clearance.
View Article and Find Full Text PDFBackground: Dose modification of renally secreted drugs in patients with chronic kidney disease (CKD) has relied on serum creatinine concentration as a biomarker to estimate glomerular filtration (GFR) under the assumption that filtration and secretion decline in parallel. A discrepancy between actual renal clearance and predicted renal clearance based on GFR alone is observed in severe CKD patients with tenofovir, a compound secreted by renal OAT1/3. Uremic solutes that inhibit OAT1/3 may play a role in this divergence.
View Article and Find Full Text PDFBackground: The proximal tubules eliminate protein-bound toxins and drugs through secretion. Measurements or estimates of GFR do not necessarily reflect the physiologically distinct process of secretion. Clinical assessment of this important intrinsic kidney function requires endogenous markers that are highly specific for secretory transport.
View Article and Find Full Text PDFNephrotoxicity testing is an important step in preclinical development of new molecular entities (NMEs) and has traditionally been performed in 2-D cell culture systems and animal models. However, 2-D culture systems fail to replicate complex microenvironment and animal models face interspecies differences including the overexpression of drug transporters. In the last decade, 3-D microphysiological systems (MPS) have been developed to address these concerns.
View Article and Find Full Text PDFBackground: The kidneys efficiently filter waste products while retaining serum proteins in the circulation. However, numerous diseases compromise this barrier function, resulting in spillage of serum proteins into the urine (proteinuria). Some studies of glomerular filtration suggest that tubules may be physiologically exposed to nephrotic-range protein levels.
View Article and Find Full Text PDFOpioid overdose, dependence, and addiction are a major public health crisis. Patients with chronic kidney disease (CKD) are at high risk of opioid overdose, therefore novel methods that provide accurate prediction of renal clearance (CL) and systemic disposition of opioids in CKD patients can facilitate the optimization of therapeutic regimens. The present study aimed to predict renal clearance and systemic disposition of morphine and its active metabolite morphine-6-glucuronide (M6G) in CKD patients using a vascularized human proximal tubule microphysiological system (VPT-MPS) coupled with a parent-metabolite full body physiologically-based pharmacokinetic (PBPK) model.
View Article and Find Full Text PDFPurpose: To best promote drug tolerability and efficacy in the clinic, data from drug-drug interaction (DDI) evaluations and subsequent translation of the results to DDI prevention and/or management strategies must be incorporated into the US Food and Drug Administration (FDA) product labeling in a consistent manner because differences in language might result in varied interpretations. This analysis aimed to assess the consistency in DDI labeling language in New Drug Applications (NDAs).
Methods: NDAs of recently approved drugs (2012-2020) that increase the exposure of digoxin, midazolam, and S-warfarin, index substrates of P-glycoprotein, cytochrome P450 (CYP) 3A, and CYP2C9 activity, respectively, were fully reviewed.
Kidneys are critical for the elimination of many drugs and metabolites via the urine, filtering waste and maintaining proper fluid and electrolyte balance. Emerging technologies incorporating engineered three-dimensional (3D) cell culture models, such as organoids and microphysiological systems (MPS) culture platforms, have been developed to replicate nephron function, leading to enhanced efficacy, safety, and toxicity evaluation of new drugs and environmental exposures. Organoids are tiny, self-organized three-dimensional tissue cultures derived from stem cells that can include dozens of cell types to replicate the complexity of an organ.
View Article and Find Full Text PDFThe use of microphysiological systems (MPS) to support absorption, distribution, metabolism, and elimination (ADME) sciences has grown substantially in the last decade, in part driven by regulatory demands to move away from traditional animal-based safety assessment studies and industry desires to develop methodologies to efficiently screen and characterize drugs in the development pipeline. The past decade of MPS development has yielded great user-driven technological advances with the collective fine-tuning of cell culture techniques, fluid delivery systems, materials engineering, and performance enhancing modifications. The rapid advances in MPS technology have now made it feasible to evaluate critical ADME parameters within a stand-alone organ system or through interconnected organ systems.
View Article and Find Full Text PDFBackground: Although proximal tubular secretion is the primary mechanism of kidney drug elimination, current kidney drug dosing strategies are on the basis of eGFR.
Methods: In a dedicated pharmacokinetic study to compare GFR with tubular secretory clearance for predicting kidney drug elimination, we evaluated stable outpatients with eGFRs ranging from 21 to 140 ml/min per 1.73 m.
Ochratoxin A (OTA) is one of the most abundant mycotoxin contaminants in food stuffs and possesses carcinogenic, nephrotoxic, teratogenic, and immunotoxic properties. Specifically, a major concern is severe nephrotoxicity, which is characterized by degeneration of epithelial cells of the proximal tubules and interstitial fibrosis. However, the mechanism of OTA toxicity, as well as the genetic risk factors contributing to its toxicity in humans has been elusive due to the lack of adequate models that fully recapitulate human kidney function in vitro.
View Article and Find Full Text PDFA vascularized human proximal tubule model in a dual-channel microphysiological system (VPT-MPS) was developed, representing an advance over previous, single-cell-type kidney microphysiological systems. Human proximal tubule epithelial cells (PTECs) and human umbilical vein endothelial cells (HUVECs) were cocultured in side-by-side channels. Over 24 h of coculturing, PTECs maintained polarized expression of Na/K ATPase, tight junctions (ZO-1), and OAT1.
View Article and Find Full Text PDFCYP2C9 is a major form of human liver cytochrome P450 that is responsible for the oxidative metabolism of several widely used low-therapeutic index drugs, including ()-warfarin and phenytoin. In a cohort of Alaska Native people, ultrarare or novel CYP2C9 protein variants, M1L (rs114071557), N218I (rs780801862), and P279T (rs182132442, CYP2C9*29), are expressed with higher frequencies than the well characterized and alleles. We report here on their relative expression in lentivirus-infected HepG2 cells and the functional characterization of purified reconstituted enzyme variants expressed in toward ()-warfarin, phenytoin, flurbiprofen, and ()-naproxen.
View Article and Find Full Text PDFDuring the 25 years since the US Congress passed the Dietary Supplement Health and Education Act (DSHEA), the law that transformed the US Food and Drug Administration's (FDA's) authority to regulate dietary supplements, the dietary supplement market has grown exponentially. Retail sales of herbal products, a subcategory of dietary supplements, have increased 83% from 2008 to 2018 ($4.8 to $8.
View Article and Find Full Text PDFVitamin K (VK), in both its phylloquinone and menaquinone forms, has been hypothesized to undergo ω- and β-oxidation on its hydrophobic side chain in order to generate the observed urinary metabolites, K acid I and K acid II, which are excreted primarily as glucuronide conjugates. Synthetic standards of K acid I, K acid II, and a putative intermediate metabolite, menaquinone (MK)1 ω-COOH, were used to develop and optimize a new atmospheric pressure negative chemical ionization LC-MS/MS assay for the quantitation of these compounds in urine from untreated individuals and subjects treated with a high dose VK supplement. VK catabolites were extracted from urine, deconjugated, and converted to their methyl ester derivatives using previously reported methodology.
View Article and Find Full Text PDFClin J Am Soc Nephrol
January 2019
Hepatic flavin-containing mono-oxygenase 3 (FMO3) metabolizes a broad array of nucleophilic heteroatom (e.g., or )-containing xenobiotics (e.
View Article and Find Full Text PDFBackground: Oxidative stress is highly prevalent in patients with end-stage renal disease and is linked to excess cardiovascular risk. Identifying therapies that reduce oxidative stress has the potential to improve cardiovascular outcomes in patients undergoing maintenance dialysis.
Study Design: Placebo-controlled, 3-arm, double-blind, randomized, clinical trial.
The kidney proximal tubule is the primary site in the nephron for excretion of waste products through a combination of active uptake and secretory processes and is also a primary target of drug-induced nephrotoxicity. Here, we describe the development and functional characterization of a 3-dimensional flow-directed human kidney proximal tubule microphysiological system. The system replicates the polarity of the proximal tubule, expresses appropriate marker proteins, exhibits biochemical and synthetic activities, as well as secretory and reabsorptive processes associated with proximal tubule function in vivo.
View Article and Find Full Text PDFElevated levels of circulating pro-atherogenic uremic solutes, particularly trimethylamine N-oxide (TMAO), have been implicated in cardiovascular disease development in patients with chronic kidney disease (CKD). TMAO is generated from trimethylamine (TMA) via metabolism by hepatic flavin-containing monooxygenase isoform 3 (FMO3). We determined the functional effects of three common FMO3 variants at amino acids 158, 308, and 257 on TMAO concentrations in a prospective cohort study and evaluated associations of polymorphisms with CKD progression and mortality.
View Article and Find Full Text PDFCellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1.
View Article and Find Full Text PDF