The preponderance of temporomandibular joint (TMJ) disorders involving TMJ disc injury inspires the need to further explore tissue engineering strategies. The objective of this study was to examine the potential of poly (glycerol sebacate) (PGS), a biocompatible, biodegradable elastomer, as a porous scaffold material for the TMJ disc. Goat fibrochondrocytes were seeded on PGS at three seeding densities (25, 50, 100 million cells/mL scaffold), respectively, and cultured for 24 h, 2 weeks, and 4 weeks.
View Article and Find Full Text PDFMagnesium has recently been explored as a potential biomaterial for degradable orthopedic implants but its effect on fibrocartilage remains unknown. The objective of this study was to assess the effect of high concentrations of magnesium ions on the matrix production of goat costal fibrochondrocytes in vitro. Cells were cultured using a scaffoldless approach with media containing magnesium chloride (MgCl(2)) or magnesium sulfate (MgSO(4)) at concentrations of 20, 50, and 100 mM in addition to the baseline magnesium concentration of 0.
View Article and Find Full Text PDFAnimal models for temporomandibular joint disorder (TMD) or degradation are necessary for assessing the value of current and future tissue engineering therapies. After reviewing the literature, it is quite apparent that most TMD animal studies can be categorized into chemical approaches or surgical/mechanical approaches. Overall, it was found that the top five cited manuscripts for all chemical models were cited by almost 40% more manuscripts than the top five manuscripts for surgical/mechanical models.
View Article and Find Full Text PDFThe aim of this study was to make a comparison of the compressive properties of the goat temporomandibular joint (TMJ) disc to the mandibular condylar cartilage (MCC) and to explore the transversely isotropic biphasic model. Samples taken mediolaterally from three regions of the TMJ disc and MCC were tested in unconfined compression at strain levels ranging from 10% to 50% and then assessed for biochemical content. The results indicated that the TMJ disc exhibits a significantly greater tangent modulus than the MCC from 20% to 50% strain with values ranging from 729 ± 267 to 2413 ± 406 kPa and 363 ± 169 to 1677 ± 538 kPa, respectively (P < .
View Article and Find Full Text PDF