Publications by authors named "Catherine J Auger"

Progesterone and progestin receptors (PRs) are known to play a role in the development of brain physiology and behavior in many different species. The distribution and regulation of PRs within the developing brain suggest that they likely contribute to the organization of the brain and behavior in a sex-specific manner. We examined the role of PR signaling during development on the organization of adult sexual behavior and androgen receptor (AR) expression in the brain.

View Article and Find Full Text PDF

The emerging area of neuroepigenetics has been linked to numerous mental health illnesses. Importantly, a large portion of what we know about early gene×environment interactions comes from examining epigenetic modifications of neuroendocrine systems. This review will highlight how neuroepigenetic mechanisms during brain development program lasting differences in neuroendocrine systems and how other neuroepigenetic processes remain plastic, even within the adult brain.

View Article and Find Full Text PDF

Several neurodevelopmental disorders are marked by atypical Methyl-CpG-binding protein 2 (MeCP2) expression or function; however, the role of MeCP2 is complex and not entirely clear. Interestingly, there are sex differences in some of these disorders, and it appears that MeCP2 has sex-specific roles during development. Specifically, recent data indicate that a transient reduction in MeCP2 within developing amygdala reduces juvenile social play behavior in males to female-typical levels.

View Article and Find Full Text PDF

The influence of progesterone in the brain and on the behavior of females is fairly well understood. However, less is known about the effect of progesterone in the male system. In male rats, receptors for progesterone are present in virtually all vasopressin (AVP) immunoreactive cells in the bed nucleus of the stria terminalis (BST) and the medial amygdala (MeA).

View Article and Find Full Text PDF

Although some DNA methylation patterns are altered by steroid hormone exposure in the developing brain, less is known about how changes in steroid hormone levels influence DNA methylation patterns in the adult brain. Steroid hormones act in the adult brain to regulate gene expression. Specifically, the expression of the socially relevant peptide vasopressin (AVP) within the bed nucleus of the stria terminalis (BST) of adult brain is dependent upon testosterone exposure.

View Article and Find Full Text PDF

Social status and resource availability can strongly influence individual behavioral responses to conspecifics. In European starlings, males that acquire nest sites sing in response to females and dominate other males. Males without nest sites sing, but not to females, and they do not interact agonistically with other males.

View Article and Find Full Text PDF

The study of epigenetics allows for the understanding of gene × environmental interactions and provides a mechanism by which brief internal or external environmental changes can shape lasting differences in gene function and behavior. Epigenetic processes appear to impact a wide variety of physiological processes within the developing brain, including neuroendocrine function. An epigenetic model is proposed by which steroid hormones and the social environment induces appropriate masculinization of the brain by turning on and off gene transcriptional events.

View Article and Find Full Text PDF

Winning aggressive disputes can enhance future fighting ability and the desire to seek out additional contests. In some instances, these effects are long lasting and vary in response to the physical location of a fight. Thus, in principle, winning aggressive encounters may cause long-term and context-dependent changes to brain areas that control the output of antagonistic behavior or the motivation to fight (or both).

View Article and Find Full Text PDF

Nuclear receptor function on DNA is regulated by the balanced recruitment of coregulatory complexes. Recruited proteins that increase gene expression are called coactivators, and those that decrease gene expression are called corepressors. Little is known about the role of corepressors, such as nuclear receptor corepressor (NCoR), on the organization of behavior.

View Article and Find Full Text PDF
Article Synopsis
  • Progesterone has been shown to reduce anxiety in animals, primarily through its rapid effects on the GABA A receptor after being converted to allopregnanolone.
  • Some studies raised questions about the full understanding of its anti-anxiety effects, prompting the hypothesis that progesterone might also interact with progestin receptors.
  • Research using male rats indicated that the anxiolytic-like effects of progesterone might also be mediated by progestin receptors, as these effects were blocked by a progestin receptor antagonist.
View Article and Find Full Text PDF

Methyl-CpG-binding protein 2 (MeCP2) binds methylated DNA and recruits corepressor proteins to modify chromatin and alter gene transcription. Mutations of the MECP2 gene can cause Rett syndrome, whereas subtle reductions of MeCP2 expression may be associated with male-dominated social and neurodevelopmental disorders. We report that transiently decreased amygdala Mecp2 expression during a sensitive period of brain sexual differentiation disrupts the organization of sex differences in juvenile social play behavior.

View Article and Find Full Text PDF

Little is known about the neural control of female responses to male courtship. Female European starlings in breeding condition with high concentrations of estrogen select mates based on variation in song and approach nest boxes broadcasting male song. In contrast, outside of the breeding season (when estrogen is low) females do not display the same response to male song.

View Article and Find Full Text PDF

Progesterone can influence various behaviors in adult male rats, however, little is known about which particular genes are regulated by progesterone in the male rat brain. Using focused microarray technology, we where able to define a subset of genes that are responsive to progesterone. Nylon membrane-based cDNA microarrays were used to profile gene expression patterns in the preoptic area/mediobasal hypothalamus (POA/MBH) of male rat brain 7 h following a single injection of progesterone.

View Article and Find Full Text PDF

Steroid receptor activation in developing brain influences a variety of cellular processes that endure into adulthood, altering both behavior and physiology. We report that estrogen receptors can be activated in a ligand-independent manner within developing brain by membrane dopamine receptors. Neonatal treatment with either estradiol or a dopamine D1 receptor agonist can increase the expression of an estrogen receptor-regulated gene (i.

View Article and Find Full Text PDF

Many social animals vocalize at high rates, suggesting that vocal communication is highly motivated and rewarding. In songbirds, much is known about the neural control of vocal behavior; however, little is known about neurobiological mechanisms regulating the motivation to communicate. This study examined a possible role for opioid neuropeptides in motivation and reward associated with song production in male European starlings (Sturnus vulgaris).

View Article and Find Full Text PDF

Birdsong, in non-tropical species, is generally more common in spring and summer when males sing to attract mates and/or defend territories. Changes in the volumes of song control nuclei, such as HVC and the robust nucleus of the arcopallium (RA), are observed seasonally. Long photoperiods in spring stimulate the recrudescence of the testes and the release of testosterone.

View Article and Find Full Text PDF

We tested the hypothesis that genes encoded on the sex chromosomes play a direct role in sexual differentiation of brain and behavior. We used mice in which the testis-determining gene (Sry) was moved from the Y chromosome to an autosome (by deletion of Sry from the Y and subsequent insertion of an Sry transgene onto an autosome), so that the determination of testis development occurred independently of the complement of X or Y chromosomes. We compared XX and XY mice with ovaries (females) and XX and XY mice with testes (males).

View Article and Find Full Text PDF