Publications by authors named "Catherine Hagedorn"

Genomic rearrangements of the neurotrophic receptor tyrosine kinase genes (NTRK1, NTRK2, and NTRK3) are the most common mechanism of oncogenic activation for this family of receptors, resulting in sustained cancer cell proliferation. Several targeted therapies have been approved for tumours harbouring NTRK fusions and a new generation of TRK inhibitors has already been developed due to acquired resistance. We established a patient-derived LMNA::NTRK1-rearranged soft-tissue sarcoma cell model ex vivo with an acquired resistance to targeted TRK inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • Surgical liver failure (SLF) can occur after surgeries where too much liver tissue is removed, often leading to high mortality rates, but its causes are not well understood.
  • Researchers used mouse models of different liver surgeries to investigate the effects of blood flow and oxygen levels on SLF, finding that early hypoxia contributes to the problem.
  • They discovered that boosting lipid oxidation through treatments like L-carnitine can improve liver regeneration and survival rates in both mice and patients, suggesting that enhancing lipid oxidation could be a promising strategy to mitigate SLF risks in clinical settings.
View Article and Find Full Text PDF

Defects in homologous recombination repair (HRR) in tumors correlate with poor prognosis and metastases development. Determining HRR deficiency (HRD) is of major clinical relevance as it is associated with therapeutic vulnerabilities and remains poorly investigated in sarcoma. Here, we show that specific sarcoma entities exhibit high levels of genomic instability signatures and molecular alterations in HRR genes, while harboring a complex pattern of chromosomal instability.

View Article and Find Full Text PDF

Extraskeletal myxoid chondrosarcoma (EMC) is a malignant mesenchymal neoplasm of uncertain differentiation as classified by the WHO Classification of Tumours 2020. Although often associated with pronlonged survival, EMC has high rates of distant recurrences and disease-associated death. EMCs are translocation sarcomas and harbor in > 90% of the cases an NR4A3 rearrangement.

View Article and Find Full Text PDF

Background: Ex situliver machine perfusion at subnormothermic/normothermic temperature isincreasingly applied in the field of transplantation to store and evaluateorgans on the machine prior transplantation. Currently, various perfusionconcepts are in clinical and preclinical applications. Over the last 6 years ina multidisciplinary team, a novel blood based perfusion technology wasdeveloped to keep a liver alive and metabolically active outside of the bodyfor at least one week.

View Article and Find Full Text PDF

Molecular events occurring in stepwise progression from pre-malignant lesions (pancreatic intraepithelial neoplasia; PanIN) to the development of pancreatic ductal adenocarcinoma (PDAC) are poorly understood. Thus, characterization of early PanIN lesions may reveal markers that can help in diagnosing PDAC at an early stage and allow understanding the pathology of the disease. We performed the molecular and histological assessment of patient-derived PanINs, tumor tissues and pancreas from mouse models with PDAC (KC mice that harbor K-RAS mutation in pancreatic tissue), where we noted marked upregulation of gastrokine (GKN) proteins.

View Article and Find Full Text PDF

Objective: The aim of this study was to maintain long-term full function and viability of partial livers perfused ex situ for sufficient duration to enable ex situ treatment, repair, and regeneration.

Background: Organ shortage remains the single most important factor limiting the success of transplantation. Autotransplantation in patients with nonresectable liver tumors is rarely feasible due to insufficient tumor-free remnant tissue.

View Article and Find Full Text PDF

Introduction: The use of normothermic liver machine perfusion to repair injured grafts ex situ is an emerging topic of clinical importance. However, a major concern is the possibility of microbial contamination in the absence of a fully functional immune system. Here, we report a standardized approach to maintain sterility during normothermic liver machine perfusion of porcine livers for one week.

View Article and Find Full Text PDF

Background: Long-term ex situ liver perfusion may rescue injured grafts. Little is known about bile flow during long-term perfusion. We report the development of a bile stimulation protocol and motivate bile flow as a viability marker during long-term ex situ liver perfusion.

View Article and Find Full Text PDF

Long-term perfusion of liver grafts outside of the body may enable repair of poor-quality livers that are currently declined for transplantation, mitigating the global shortage of donor livers. In current ex vivo liver perfusion protocols, hyperoxic blood (arterial blood) is commonly delivered in the portal vein (PV). We perfused porcine livers for one week and investigated the effect of and mechanisms behind hyperoxia in the PV on hepatic arterial resistance.

View Article and Find Full Text PDF

Objective: With the growing demand for livers in the field of transplantation, interest in normothermic ex situ machine perfusion (NMP) has increased in recent years. This may open the door for novel therapeutic interventions such as repair of suboptimal grafts. For successful long-term NMP of livers, blood glucose (BG) levels need to be maintained in a close to physiological range.

View Article and Find Full Text PDF

The ability to preserve metabolically active livers ex vivo for 1 week or more could allow repair of poor-quality livers that would otherwise be declined for transplantation. Current approaches for normothermic perfusion can preserve human livers for only 24 h. Here we report a liver perfusion machine that integrates multiple core physiological functions, including automated management of glucose levels and oxygenation, waste-product removal and hematocrit control.

View Article and Find Full Text PDF

Objective: The hepatic arterial buffer response is a well-known phenomenon in hepatic circulation, describing the response of hepatic arterial resistance to changes in portal vein flow. Several vasoactive metabolites underlying its mechanism have been proposed, however, there is currently no clear consensus. The aim of this study is to investigate the hepatic arterial buffer response of porcine livers preserved in a controlled ex vivo perfusion machine.

View Article and Find Full Text PDF