Cytotoxic CD4 T cell effectors (ThCTLs) kill virus-infected major histocompatibility complex (MHC) class II cells, contributing to viral clearance. We identify key factors by which influenza A virus infection drives non-cytotoxic CD4 effectors to differentiate into lung tissue-resident ThCTL effectors. We find that CD4 effectors must again recognize cognate antigen on antigen-presenting cells (APCs) within the lungs.
View Article and Find Full Text PDFAge-associated B cells (ABC) accumulate with age and are associated with autoimmunity and chronic infection. However, their contributions to acute infection in the aged and their developmental pathways are unclear. We find that the response against influenza A virus infection in aged mice is dominated by a Fas GL7 effector B cell population we call infection-induced ABC (iABC).
View Article and Find Full Text PDFWhile influenza infection induces robust, long-lasting, antibody responses and protection, including the T follicular helper cells (T) required to drive B cell germinal center (GC) responses, most influenza vaccines do not. We investigated the mechanisms that drive strong T responses during infection. Infection induces viral replication and antigen (Ag) presentation lasting through the CD4 effector phase, but Ag and pathogen recognition receptor signals are short-lived after vaccination.
View Article and Find Full Text PDFCD4 T cells can differentiate into multiple effector subsets, including ThCTL that mediate MHC class II-restricted cytotoxicity. Although CD4 T cell-mediated cytotoxicity has been reported in multiple viral infections, their characteristics and the factors regulating their generation are unclear, in part due to a lack of a signature marker. We show in this article that, in mice, NKG2C/E identifies the ThCTL that develop in the lung during influenza A virus infection.
View Article and Find Full Text PDF