Protective immunity against intracellular pathogens involves the induction of robust CTL responses. Vaccination with protein Ags establishes such responses only when combined with immune-stimulatory adjuvants. In this study, we compared different adjuvants and identified triphosphate RNA (3pRNA) as especially effective at inducing CTL responses.
View Article and Find Full Text PDFThe mononuclear phagocyte system includes macrophages and dendritic cells (DCs), which are usually classified by morphology, phenotypical characteristics, and function. In the last decades, large research communities have gathered substantial knowledge on the roles of these cells in immune homeostasis and anti-infectious defense. However, these communities developed to a degree independent from each other, so that the nomenclature and functions of the numerous DC and macrophage subsets overlap, resulting in the present intense debate about the correct nomenclature.
View Article and Find Full Text PDFNew vaccination strategies focus on achieving CD8(+) T cell (CTL) immunity rather than on induction of protective antibody responses. While the requirement of CD4(+) T (Th) cell help in dendritic cell (DC) activation and licensing, and in CTL memory induction has been described in several disease models, CTL responses may occur in a Th cell help-independent manner. Invariant natural killer T cells (iNKT cells) can substitute for Th cell help and license DC as well.
View Article and Find Full Text PDFAlthough the spleen is a major site where immune tolerance to circulating innocuous antigens occurs, the kidney also contributes. Circulating antigens smaller than albumin are constitutively filtered and concentrated in the kidney and reach the renal lymph node by lymphatic drainage, where resident dendritic cells (DCs) capture them and induce tolerance of specific cytotoxic T cells through unknown mechanisms. Here, we found that the coinhibitory cell surface receptor programmed death 1 (PD-1) on cytotoxic T cells mediates to their tolerance.
View Article and Find Full Text PDFThe mechanisms by which regulatory T cells (T(regs)) suppress autoantibody production are unclear. Here we have addressed this question using transgenic mice expressing model antigens in the kidney. We report that T(regs) were essential and sufficient to suppress autoreactive B cells in an antigen-specific manner and to prevent them from producing autoantibodies.
View Article and Find Full Text PDFTo study the role of CD25(+) regulatory T cells (T(regs)) in peripheral B cell tolerance, we generated transgenic rat insulin promoter RIP-OVA/HEL mice expressing the model Ags OVA and HEL in pancreatic islet beta cells (where RIP is rat insulin promoter and HEL is hen egg lysozyme). Adoptively transferred transgenic OVA-specific CD4(+) and CD8(+) T cells proliferated only in the autoantigen-draining pancreatic lymph node (PLN), demonstrating pancreas-specific Ag expression. Transferred HEL-specific transgenic B cells (IgHEL cells) disappeared within 3 wk from transgenic but not from nontransgenic mice immunized with autoantigen.
View Article and Find Full Text PDF