Publications by authors named "Catherine G Haslam"

Anode-free solid-state batteries contain no active material at the negative electrode in the as-manufactured state, yielding high energy densities for use in long-range electric vehicles. The mechanisms governing charge-discharge cycling of anode-free batteries are largely controlled by electro-chemo-mechanical phenomena at solid-solid interfaces, and there are important mechanistic differences when compared with conventional lithium-excess batteries. This Perspective provides an overview of the factors governing lithium nucleation, growth, stripping and cycling in anode-free solid-state batteries, including mechanical deformation of lithium, the chemical and mechanical properties of the current collector, microstructural effects, and stripping dynamics.

View Article and Find Full Text PDF

'Anode-free' or, more fittingly, metal reservoir-free cells could drastically improve current solid-state battery technology by achieving higher energy density, improving safety and simplifying manufacturing. Various strategies have been reported so far to control the morphology of electrodeposited alkali metal films to be homogeneous and dense, but until now, the microstructure of electrodeposited alkali metal is unknown, and a suitable characterization route is yet to be identified. Here we establish a reproducible protocol for characterizing the size and orientation of metal grains in differently processed lithium and sodium samples by a combination of focused ion beam and electron backscatter diffraction.

View Article and Find Full Text PDF