Publications by authors named "Catherine E Creeley"

This paper reviews the findings from preclinical animal and human clinical research investigating maternal/fetal, neonatal, and child neurodevelopmental outcomes following prenatal exposure to psychotropic drugs. Evidence for the risks associated with prenatal exposure was examined, including teratogenicity, neurodevelopmental effects, neonatal toxicity, and long-term neurobehavioral consequences (i.e.

View Article and Find Full Text PDF

Epidemiological studies suggest exposures to anesthetic agents and/or sedative drugs (AASDs) in children under three years old, or pregnant women during the third trimester, may adversely affect brain development. Evidence suggests lengthy or repeated AASD exposures are associated with increased risk of neurobehavioral deficits. Animal models have been valuable in determining the type of acute damage in the developing brain induced by AASD exposures, as well as in elucidating long-term functional consequences.

View Article and Find Full Text PDF

Problem And Background: Psychotropic medication use is increasingly common among pregnant women. Many women solicit information from other mothers about the safety of these medications for use during pregnancy, yet little is known about the specific advice they receive.

Aim: The purpose of the current study was to examine the type of feedback women receive on a popular internet message board about psychotropic medication use during pregnancy.

View Article and Find Full Text PDF

Fifteen years ago Olney and colleagues began using animal models to evaluate the effects of anesthetic and sedative agents (ASAs) on neurodevelopment. The results from ongoing studies indicate that, under certain conditions, exposure to these drugs during development induces an acute elevated apoptotic neurodegenerative response in the brain and long-term functional impairments. These animal models have played a significant role in bringing attention to the possible adverse effects of exposing the developing brain to ASAs when few concerns had been raised previously in the medical community.

View Article and Find Full Text PDF

The fetal and neonatal periods are critical and sensitive periods for neurodevelopment, and involve rapid brain growth in addition to natural programmed cell death (i.e., apoptosis) and synaptic pruning.

View Article and Find Full Text PDF

Anesthetic and anti-epileptic drugs used in pediatric and obstetric medicine and several drugs, including alcohol, that are abused by pregnant women, trigger widespread neuroapoptosis in the developing brain of several animal species, including non-human primates. Caffeine (CAF) is often administered to premature infants to stimulate respiration, and these infants are also exposed simultaneously to anesthetic drugs for procedural sedation and/or surgical procedures. Pregnant women who abuse alcohol or other apoptogenic drugs also may heavily consume CAF.

View Article and Find Full Text PDF

Maternal ingestion of alcohol during pregnancy can cause a disability syndrome termed Fetal Alcohol Spectrum Disorder (FASD), which may include craniofacial malformations, structural pathology in the brain, and a variety of long-term neuropsychiatric disturbances. There is compelling evidence that exposure to alcohol during early embryogenesis (4th week of gestation) can cause excessive death of cell populations that are essential for normal development of the face and brain. While this can explain craniofacial malformations and certain structural brain anomalies that sometimes accompany FASD, in many cases these features are absent, and the FASD syndrome manifests primarily as neurobehavioral disorders.

View Article and Find Full Text PDF

Background: In utero exposure of the fetal non-human primate (NHP) brain to alcohol on a single occasion during early or late third-trimester gestation triggers widespread acute apoptotic death of cells in both gray and white matter (WM) regions of the fetal brain. In a prior publication, we documented that the dying gray matter cells are neurons, and described the regional distribution and magnitude of this cell death response. Here, we present new findings regarding the magnitude, identity and maturational status of the dying WM cells in these alcohol-exposed fetal NHP brains.

View Article and Find Full Text PDF

Background: The authors have previously shown that exposure of the neonatal nonhuman primate (NHP) brain to isoflurane for 5 h causes widespread acute apoptotic degeneration of neurons and oligodendrocyte. The current study explored the potential apoptogenic action of isoflurane in the fetal NHP brain.

Methods: Fetal rhesus macaques at gestational age of 120 days (G120) were exposed in utero for 5 h to isoflurane anesthesia (n = 5) or to no anesthesia (control condition; n = 4), and all regions of the brain were systematically evaluated 3 h later for evidence of apoptotic degeneration of neurons or glia.

View Article and Find Full Text PDF

Objective: Previously we reported that exposure of 6-day-old (P6) rhesus macaques to isoflurane for 5 hours triggers a robust neuroapoptosis response in developing brain. We have also observed (unpublished data) that isoflurane causes apoptosis of cellular profiles in the white matter that resemble glia. We analyzed the cellular identity of the apoptotic white matter profiles and determined the magnitude of this cell death response to isoflurane.

View Article and Find Full Text PDF

Background: Exposure of rhesus macaque fetuses for 24 h or neonates for 9 h to ketamine anesthesia causes neuroapoptosis in the developing brain. The current study clarifies the minimum exposure required for and the extent and spatial distribution of ketamine-induced neuroapoptosis in rhesus fetuses and neonates.

Method: Ketamine was administered by IV infusion for 5 h to postnatal day 6 rhesus neonates or to pregnant rhesus females at 120 days' gestation (full term = 165 days).

View Article and Find Full Text PDF

While the toxic effects of lead have been recognized for millennia, it has remained a significant public health concern due to its continued use and toxicological potential. Of particular interest is the increased susceptibility of young children to the toxic effects of lead. Although the exact mechanism(s) for lead toxicity is currently not well understood, research has established that it can be a potent NMDA antagonist.

View Article and Find Full Text PDF

Background: Exposure to NMDA glutamate antagonists during the brain growth spurt period causes widespread neuroapoptosis in the rodent brain. This period in rodents occurs during the first two weeks after birth, and corresponds to the third trimester of pregnancy and several years after birth in humans. The developing human brain may be exposed to NMDA antagonists through drug-abusing mothers or through anesthesia.

View Article and Find Full Text PDF

The ability of brief exposure to alcohol to cause widespread neuroapoptosis in the developing rodent brain and subsequent long-term neurocognitive deficits has been proposed as a mechanism underlying the neurobehavioral deficits seen in fetal alcohol spectrum disorder (FASD). It is unknown whether brief exposure to alcohol causes apoptosis in the fetal primate brain. Pregnant fascicularis macaques at various stages of gestation (G105 to G155) were exposed to alcohol for 8h, then the fetuses were delivered by caesarean section and their brains perfused with fixative and evaluated for apoptosis.

View Article and Find Full Text PDF

Background: Brief isoflurane anesthesia induces neuroapoptosis in the developing rodent brain, but susceptibility of non-human primates to the apoptogenic action of isoflurane has not been studied. Therefore, we exposed postnatal day 6 (P6) rhesus macaques to a surgical plane of isoflurane anesthesia for 5 h, and studied the brains 3 h later for histopathologic changes.

Method: With the same intensity of physiologic monitoring typical for human neonatal anesthesia, five P6 rhesus macaques were exposed for 5 h to isoflurane maintained between 0.

View Article and Find Full Text PDF

Millions of human fetuses, infants, and children are exposed to anesthetic drugs every year in the United States and throughout the world. Anesthesia administered during critical stages of neurodevelopment has been considered safe and without adverse long-term consequences. However, recent reports provide mounting evidence that exposure of the immature animal brain to anesthetics during the period of rapid synaptogenesis, also known as the brain growth spurt period, triggers widespread apoptotic neurodegeneration, inhibits neurogenesis, and causes significant long-term neurocognitive impairment.

View Article and Find Full Text PDF

Background: Ethanol and anesthetic drugs trigger neuroapoptosis in the developing mouse brain. Recently, it was found that ethanol-induced neuroapoptosis is preceded by suppressed phosphorylation of extracellular signal-regulated protein kinase (ERK), and lithium counteracts both the phosphorylated ERK suppressant action and ethanol-induced neuroapoptosis. The current study was undertaken to address the following questions.

View Article and Find Full Text PDF

Background: Magnesium sulfate (MgSO4) is often used as a treatment for pre-eclampsia/eclampsia and preterm labor, resulting in the exposure of a significant number of neonates to this drug despite a lack of evidence suggesting that it is safe, or effective as a tocolytic. While there is evidence that MgSO4 may be neuroprotective in perinatal brain injury, recent reviews have suggested that the effects are dependent upon dose, and that higher doses may actually increase neonatal morbidity and mortality. There is a lack of evidence investigating the neurotoxic effects of neonatal magnesium (Mg) exposure on the developing brain, specifically in terms of neurodevelopmental apoptosis, a cell-killing phenomenon known to be potentiated by other drugs with mechanisms of action at Mg-binding sites (i.

View Article and Find Full Text PDF

The NMDA antagonist, memantine (Namenda), and the cholinesterase inhibitor, donepezil (Aricept), are currently being used widely, either individually or in combination, for treatment of Alzheimer's disease (AD). NMDA antagonists have both neuroprotective and neurotoxic properties; the latter is augmented by drugs, such as pilocarpine, that increase cholinergic activity. Whether donepezil, by increasing cholinergic activity, might augment memantine's neurotoxic potential has not been investigated.

View Article and Find Full Text PDF

Objectives: Results from recent studies on animal models of concussion suggest that multiple, rather than single, episodes of mild traumatic brain injury result in impaired cognitive performance in mice. The objective of the present study was to administer multiple impacts to the heads of mice while directly measuring the force of the impacts to determine how these parameters are related to transient loss of consciousness, cognitive deficits, and potential neuropathologic effects.

Methods: even-week-old male C57BL/6 mice were randomly assigned to experimental conditions involving three impacts (weight-drop method) to the head to induce mild traumatic brain injury or to sham control procedures.

View Article and Find Full Text PDF

The authors examined the impact of caffeine on human memory and predictions of memory (i.e., metamemory).

View Article and Find Full Text PDF

This experiment was conducted to examine the influence of a moderate dose of caffeine (4 mg/kg) on delayed memory, metamemory, and sustained attention. One hundred and forty-two volunteers ingested either caffeine or placebo during a study session which included three different memory tasks (free recall, cued recall, and recognition), and they made predictions of future memory performance. On day 2, participants again ingested either caffeine or placebo and completed memory tests.

View Article and Find Full Text PDF