Publications by authors named "Catherine Dubois D'enghien"

Background: Monoallelic germline MBD4 pathogenic variants were recently reported to cause a predisposition to uveal melanoma, associated with a specific tumor mutational signature and good response to immunotherapy. Monoallelic tumor pathogenic variants have also been described in brain tumors, breast cancers, and myxofibrosarcomas, whereas biallelic germline MBD4 pathogenic variants have been involved in a recessive hereditary adenomatous polyposis and a specific type of acute myeloid leukemia.

Methods: We analyzed MBD4 for all patients with a diagnosis of uveal melanoma at Institut Curie since July 2021 and in the 3240 consecutive female probands explored at the Institut Curie for suspicion of predisposition to breast cancer between July 2021 and February 2023.

View Article and Find Full Text PDF

Background: DICER1 syndrome is an autosomal dominant inherited syndrome predisposing to various benign and malignant tumors, mainly occurring in children and young adults, requiring broad surveillance starting at birth with repeated irradiating imaging exams and sedations for young patients. It is caused by monoallelic germline pathogenic variants in the DICER1 gene. More than 90% of tumors bear an additional somatic DICER1 missense hotspot mutation, as a second hit, involving 1 of 6 codons clustered in exons 24 and 25.

View Article and Find Full Text PDF
Article Synopsis
  • There is a rare genetic condition that can lead to different types of tumors, and it is passed down from parents to children.
  • Two boys with this genetic condition were found to have specific testicular tumors called Sertoli and Leydig cell tumors.
  • The discovery of these tumors suggests that more genetic testing is needed for kids with similar tumors to help monitor their health better.
View Article and Find Full Text PDF
Article Synopsis
  • Nijmegen breakage syndrome is linked to mutations in the NBN gene and leads to severe health issues like microcephaly, cancer risk, and infertility.
  • A new study identified a specific NBN variant in Lebanese patients that is primarily associated with infertility, differing from the usual severe symptoms of the syndrome.
  • Functional tests showed that, despite reduced NBN levels and some cell cycle defects, these patients retained certain protein functions that may explain their milder symptoms compared to typical Nijmegen breakage syndrome cases.
View Article and Find Full Text PDF

Ataxia-telangiectasia (A-T) is a recessive disorder caused by biallelic pathogenic variants of ataxia-telangiectasia mutated (ATM). This disease is characterized by progressive ataxia, telangiectasia, immune deficiency, predisposition to malignancies, and radiosensitivity. However, hypomorphic variants may be discovered associated with very atypical phenotypes, raising the importance of evaluating their pathogenic effects.

View Article and Find Full Text PDF

Ataxia-telangiectasia-like disorder (ATLD) is a rare genomic instability syndrome caused by biallelic variants of MRE11 (meiotic recombination 11) characterized by progressive cerebellar ataxia and typical karyotype abnormalities. These symptoms are common to those of ataxia-telangiectasia, which is consistent with the key role of MRE11 in ataxia-telangiectasia mutated (ATM) activation after DNA double-strand breaks. Three unrelated French patients were referred with ataxia.

View Article and Find Full Text PDF

Background: V(D)J recombination ensures the diversity of the adaptive immune system. Although its complete defect causes severe combined immunodeficiency (ie, TB severe combined immunodeficiency), its suboptimal activity is associated with a broad spectrum of immune manifestations, such as late-onset combined immunodeficiency and autoimmunity. The earliest molecular diagnosis of these patients is required to adopt the best therapy strategy, particularly when it involves a myeloablative conditioning regimen for hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

Background: The ataxia telangiectasia mutated (ATM) gene is a moderate-risk breast cancer susceptibility gene; germline loss-of-function variants are found in up to 3% of hereditary breast and ovarian cancer (HBOC) families who undergo genetic testing. So far, no clear histopathological and molecular features of breast tumours occurring in ATM deleterious variant carriers have been described, but identification of an ATM-associated tumour signature may help in patient management.

Methods: To characterise hallmarks of ATM-associated tumours, we performed systematic pathology review of tumours from 21 participants from ataxia-telangiectasia families and 18 participants from HBOC families, as well as copy number profiling on a subset of 23 tumours.

View Article and Find Full Text PDF

Germline DICER1 pathogenic variants predispose to numerous benign and malignant tumors. In this report, we describe DICER1 gene analysis in an adolescent diagnosed with multinodular goiter, ovarian Sertoli-Leydig cell tumor, and lung cyst. DICER1 mutational screening at the DNA level failed to detect any pathogenic variant.

View Article and Find Full Text PDF

Recent studies have linked constitutive telomere length (TL) to aging-related diseases including cancer at different sites. ATM participates in the signaling of telomere erosion, and inherited mutations in ATM have been associated with increased risk of cancer, particularly breast cancer. The goal of this study was to investigate whether carriage of an ATM mutation and TL interplay to modify cancer risk in ataxia-telangiectasia (A-T) families.

View Article and Find Full Text PDF
Article Synopsis
  • * Three patients with biallelic FANCM truncating mutations showed chromosomal instability and sensitivity to chemotherapy, but did not present the usual FA symptoms like congenital malformations or blood disorders.
  • * The study confirms that loss-of-function mutations in FANCM lead to a unique cancer predisposition syndrome, and highlights the need for caution in administering chemotherapy and radiation to affected patients due to potential toxicity.
View Article and Find Full Text PDF

Ataxia Telangiectasia (A-T) is caused by biallelic inactivation of the Ataxia Telangiectasia Mutated (ATM) gene, due to nonsense or missense mutations, small insertions/deletions (indels), splicing alterations, and large genomic rearrangements. After establishing A-T clinical diagnosis, a molecular confirmation is needed, based on the detection of one of these loss-of-function mutations in at least one allele. In most cases, the pathogenicity of the detected mutations is sufficient to make a definitive diagnosis.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a recessive genetic disease characterized by congenital abnormalities, chromosome instability, progressive bone marrow failure (BMF), and a strong predisposition to cancer. Twenty FA genes have been identified, and the FANC proteins they encode cooperate in a common pathway that regulates DNA crosslink repair and replication fork stability. We identified a child with severe BMF who harbored biallelic inactivating mutations of the translesion DNA synthesis (TLS) gene REV7 (also known as MAD2L2), which encodes the mutant REV7 protein REV7-V85E.

View Article and Find Full Text PDF

Background: Ataxia-telangiectasia (A-T) is a multisystem disorder characterized by progressive neurologic impairment, variable immunodeficiency, impaired organ maturation, X-ray hypersensitivity, oculocutaneous telangiectasia, and a predisposition to malignancy.

Aim: We performed this study in order to describe clinical, immunological and molecular features of patients with AT followed in the south of Tunisia Methods: we performed a retrospective study (1996-2012) in the south of Tunisia about all cases of A-T in order to describe their clinical, immunological and molecular features.

Results: 11 cases of AT were found.

View Article and Find Full Text PDF

Purpose: Biallelic mutations in ATM cause ataxia-telangiectasia (AT), a rare inherited disease with a high incidence of cancer. Precise estimates of the risk, presentation, and outcomes of cancer in patients with AT need to be addressed in large series.

Patients And Methods: In this large retrospective cohort, 69 patients with cancers (24.

View Article and Find Full Text PDF

Background: Fanconi anemia (FA) predisposes to hematologic disorders and myeloid neoplasia in childhood and to solid cancers, mainly oral carcinomas, in early adulthood. Few cases of solid cancers have been reported in childhood.

Procedures: We conducted a national retrospective study of solid tumors occurring in patients registered with or determined to have FA during childhood in France.

View Article and Find Full Text PDF

Objective: To assess the clinical spectrum of ataxia-telangiectasia (A-T) in adults, with a focus on movement disorders.

Methods: A total of 14 consecutive adults with A-T were included at 2 tertiary adult movement disorders centers and compared to 53 typical patients with A-T. Clinical evaluation, neurophysiologic and video-oculographic recording, imaging, laboratory investigations, and ATM analysis were performed.

View Article and Find Full Text PDF

Background: Most currently known breast cancer predisposition genes play a role in DNA repair by homologous recombination. Recent studies conducted on RAD51 paralogs, involved in the same DNA repair pathway, have identified rare germline mutations conferring breast and/or ovarian cancer predisposition in the RAD51C, RAD51D and XRCC2 genes. The present study analysed the five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3) to estimate their contribution to breast and ovarian cancer predisposition.

View Article and Find Full Text PDF

The genetic cause of some familial nonsyndromic renal cell carcinomas (RCC) defined by at least two affected first-degree relatives is unknown. By combining whole-exome sequencing and tumor profiling in a family prone to cases of RCC, we identified a germline BAP1 mutation c.277A>G (p.

View Article and Find Full Text PDF

Ataxia telangiectasia (A-T) is a rare autosomal recessive disorder characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, immune defects and predisposition to malignancies. A-T is caused by biallelic inactivation of the ATM gene, in most cases by frameshift or nonsense mutations. More rarely, ATM missense mutations with unknown consequences on ATM function are found, making definitive diagnosis more challenging.

View Article and Find Full Text PDF
Article Synopsis
  • Ataxia-telangiectasia (A-T) is a rare genetic disorder caused by mutations in the ATM gene, leading to neurological symptoms, increased infections, and higher cancer risk.
  • A study of 240 A-T patients in France showed a 20-year survival rate of 53.4%, with patients having total gene loss (null mutations) facing worse outcomes due to earlier cancer onset compared to those with partial mutations (hypomorphic mutations).
  • Findings suggest that the patient's ATM genotype affects both morbidity and mortality, highlighting the potential for tailored prognostic and therapeutic approaches.
View Article and Find Full Text PDF

Fanconi anemia (FA) is a genetic condition associated with bone marrow (BM) failure, myelodysplasia (MDS), and acute myeloid leukemia (AML). We studied 57 FA patients with hypoplastic or aplastic anemia (n = 20), MDS (n = 18), AML (n = 11), or no BM abnormality (n = 8). BM samples were analyzed by karyotype, high-density DNA arrays with respect to paired fibroblasts, and by selected oncogene sequencing.

View Article and Find Full Text PDF

DNA damage checkpoints in the cell cycle may be important barriers against cancer progression in human cells. Fanconi anemia (FA) is an inherited DNA instability disorder that is associated with bone marrow failure and a strong predisposition to cancer. Although FA cells experience constitutive chromosomal breaks, cell cycle arrest at the G2 DNA damage checkpoint, and an excess of cell death, some patients do become clinically stable, and the mechanisms underlying this, other than spontaneous reversion of the disease-causing mutation, are not well understood.

View Article and Find Full Text PDF