Publications by authors named "Catherine Drummond"

Article Synopsis
  • Lung cancer patients often initially respond to targeted therapies, but many experience relapses due to drug resistance driven by a group of cells called drug-tolerant persisters (DTPs).
  • DTPs enter a dormant state that helps them survive treatment and display traits similar to stem cells, along with notable changes in their genetics and metabolism.
  • While much research has focused on protein coding changes in DTPs, this review discusses the potential significance of long non-coding RNAs (lncRNAs) in understanding drug tolerance and genetic resistance in lung adenocarcinoma.
View Article and Find Full Text PDF

Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS.

View Article and Find Full Text PDF

All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis.

View Article and Find Full Text PDF

PTEN promoter hypermethylation is nearly universal and PTEN copy number loss occurs in ~25% of fusion-negative rhabdomyosarcoma (FN-RMS). Here we show Pten deletion in a mouse model of FN-RMS results in less differentiated tumors more closely resembling human embryonal RMS. PTEN loss activated the PI3K pathway but did not increase mTOR activity.

View Article and Find Full Text PDF

Background/objectives: Vulval lichen sclerosus (VLS) is a chronic inflammatory skin condition predominantly affecting the anogenital region in women and children. To date, there is lack of agreement amongst experts on a severity scale to aid assessment, research and treatment stratification on VLS. Furthermore, literature on best practice for long-term management of VLS is lacking.

View Article and Find Full Text PDF

Amsacrine, an anticancer drug first synthesised in 1970 by Professor Cain and colleagues, showed excellent preclinical activity and underwent clinical trial in 1978 under the auspices of the US National Cancer Institute, showing activity against acute lymphoblastic leukaemia. In 1984, the enzyme DNA topoisomerase II was identified as a molecular target for amsacrine, acting to poison this enzyme and to induce DNA double-strand breaks. One of the main challenges in the 1980s was to determine whether amsacrine analogues could be developed with activity against solid tumours.

View Article and Find Full Text PDF

We investigated the influence of selected SNPs in exon 4 and intron 4 on cancer risk, clinicopathological features and expression of isoforms. The intron 4 SNPs were significantly over-represented in cohorts of mixed cancers compared to three ethnically matched controls, suggesting they confer increased cancer risk. Further analysis showed that heterozygosity at rs1042522(GC) and either of the two intronic SNPs rs9895829(TC) and rs2909430(AG) confer a 2.

View Article and Find Full Text PDF

Prostate cancer is the second most common cancer in men, for which there are no reliable biomarkers or targeted therapies. Here we demonstrate that elevated levels of Δ133TP53β isoform characterize prostate cancers with immune cell infiltration, particularly T cells and CD163+ macrophages. These cancers are associated with shorter progression-free survival, Gleason scores ≥ 7, and an immunosuppressive environment defined by a higher proportion of PD-1, PD-L1 and colony-stimulating factor 1 receptor (CSF1R) positive cells.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) histologically resembles developing skeletal muscle and is thought to solely originate from a differentiation block in muscle progenitors. We demonstrate that RMS can arise from endothelial progenitor cells following reprogramming and myogenic transdifferentiation. These results highlight how tumors with identical morphological features can arise from different cell types and offer insight into RMS formation in non-myogenic tissue.

View Article and Find Full Text PDF

Tenovin-6 is the most studied member of a family of small molecules with antitumour activity in vivo. Previously, it has been determined that part of the effects of tenovin-6 associate with its ability to inhibit SirT1 and activate p53. However, tenovin-6 has also been shown to modulate autophagic flux.

View Article and Find Full Text PDF

The development of non-genotoxic therapies that activate wild-type p53 in tumors is of great interest since the discovery of p53 as a tumor suppressor. Here we report the identification of over 100 small-molecules activating p53 in cells. We elucidate the mechanism of action of a chiral tetrahydroindazole (HZ00), and through target deconvolution, we deduce that its active enantiomer (R)-HZ00, inhibits dihydroorotate dehydrogenase (DHODH).

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that histologically resembles embryonic skeletal muscle. RMS occurs throughout the body and an exclusively myogenic origin does not account for RMS occurring in sites devoid of skeletal muscle. We previously described an RMS model activating a conditional constitutively active Smoothened mutant (SmoM2) with aP2-Cre.

View Article and Find Full Text PDF

Angiosarcoma is an aggressive vascular sarcoma with an extremely poor prognosis. Because of the relative rarity of this disease, its molecular drivers and optimal treatment strategies are obscure. DICER1 is an RNase III endoribonuclease central to miRNA biogenesis, and germline mutations result in a cancer predisposition syndrome, associated with an increased risk of many tumor types.

View Article and Find Full Text PDF

Although most infantile haemangiomas do not require treatment due to a natural history of spontaneous involution, some require early intervention. The Australasian Vascular Anomalies Network and the Australasian Paediatric Dermatology Network have developed a consensus statement for the treatment of infantile haemangiomas with oral propranolol. Infants with haemangiomas that are life threatening, at risk of ulceration, or at risk of causing a significant functional impairment, psychological impact or physical deformity should be treated early with oral propranolol.

View Article and Find Full Text PDF

Non-genotoxic reactivation of the p53 pathway by MDM2-p53 binding antagonists is an attractive treatment strategy for wild-type TP53 cancers. To determine how resistance to MDM2/p53 binding antagonists might develop, SJSA-1 and NGP cells were exposed to growth inhibitory concentrations of chemically distinct MDM2 inhibitors, Nutlin-3 and MI-63, and clonal resistant cell lines generated. The p53 mediated responses of parental and resistant cell lines were compared.

View Article and Find Full Text PDF

Vulvodynia is a common and debilitating chronic pain syndrome characterised by neuropathic-type pain. Localised provoked vulvodynia is the most common type, followed by generalised unprovoked vulvodynia. Vulvodynia is a diagnosis of exclusion.

View Article and Find Full Text PDF

Malignant melanoma is the most dangerous type of skin cancer. Although recent progress in treatment has been achieved, lack of response, drug resistance and relapse remain major problems. The tumor suppressor p53 is rarely mutated in melanoma, yet it is inactive in the majority of cases due to dysregulation of upstream pathways.

View Article and Find Full Text PDF

We have shown earlier that overexpression of the human mitochondrial ribosomal protein MRPS18-2 (S18-2) led to immortalization of primary rat embryonic fibroblasts. The derived cells expressed the embryonic stem cell markers, and cellular pathways that control cell proliferation, oxidative phosphorylation, cellular respiration, and other redox reactions were activated in the immortalized cells.Here we report that, upon overexpression of S18-2 protein, primary rat skin fibroblasts underwent cell transformation.

View Article and Find Full Text PDF

Atopic eczema is a chronic inflammatory disease affecting about 30% of Australian and New Zealand children. Severe eczema costs over AUD 6000/year per child in direct medical, hospital and treatment costs as well as time off work for caregivers and untold distress for the family unit. In addition, it has a negative impact on a child's sleep, education, development and self-esteem.

View Article and Find Full Text PDF

While small-molecule inhibitors of class I/II histone deacetylases (HDAC) have been approved for cancer treatment, inhibitors of the sirtuins (a family of class III HDACs) still require further validation and optimization to enter clinical trials. Recent studies show that tenovin-6, a small-molecule inhibitor of sirtuins SirT1 and SirT2, reduces tumor growth in vivo and eliminates leukemic stem cells in a murine model for chronic myelogenous leukemia. Here, we describe a tenovin analogue, tenovin-D3, that preferentially inhibits sirtuin SirT2 and induces predicted phenotypes for SirT2 inhibition.

View Article and Find Full Text PDF

Structure-activity relationships for the MDM2-p53 inhibitory activity of a series of A-ring substituted 2-N-benzyl-3-(4-chlorophenyl)-3-(1-(hydroxymethyl)cyclopropyl)methoxy)isoindolinones have been investigated, giving rise to compounds with improved potency over their unsubstituted counterparts. Isoindolinone A-ring substitution with a 4-chloro group for the 4-nitrobenzyl, 4-bromobenzyl and 4-cyanobenzyl derivatives (10a-c) and substitution with a 6-tert-butyl group for the 4-nitrobenzyl derivative (10j) were found to confer additional potency. Resolution of the enantiomers of 10a showed that potent MDM2-p53 activity resided in the (-)-enantiomer ((-)-10a; IC(50)=44 ± 6 nM).

View Article and Find Full Text PDF