Circulating endothelial progenitor cells (cEPC) are capable of homing to neovascularisation sites, in which they proliferate and differentiate into endothelial cells. Transplantation of cEPC-derived cells, in particular those isolated from umbilical cord blood (UCB), has emerged as a promising approach in the treatment of cardio-vascular diseases. After in vivo transplantation, these cells may be exposed to local or systemic inflammation or pathogens, of which they are a common target.
View Article and Find Full Text PDFHuman ECFCs contribute to vascular repair. For this reason, they are considered as valuable cell therapy products in ischemic diseases. Porous scaffolds are prepared that are composed of natural polysaccharides, pullulan and dextran, by chemical crosslinking without use of organic solvents.
View Article and Find Full Text PDFUmbilical cord blood (CB) represents a main source of circulating endothelial progenitor cells (cEPCs). In view of their clinical use, in either the autologous or allogeneic setting, cEPCs should likely be expanded from CB kept frozen in CB banks. In this study, we compared the expansion, functional features, senescence pattern over culture, and in vivo angiogenic potential of cEPCs isolated from fresh or cryopreserved CB (cryoCB).
View Article and Find Full Text PDFThe discovery of circulating endothelial progenitor cells (EPCs) in adult peripheral blood has opened up many exciting possibilities in vascular biology. Several studies have confirmed the existence of EPCs, as well as their bone marrow origin and their ability to integrate into vascular structures at sites of neoangiogenesis. EPCs appear to be naturally involved in the prevention of ischemia by participating directly in the vascularization process.
View Article and Find Full Text PDFObjective: To assess the level of circulating endothelial progenitor cells (CEPC) in cycling women compared with men and menopausal women.
Design: Controlled clinical study.
Setting: Healthy, nonsmoking volunteers.