Publications by authors named "Catherine Costello"

In previous work, we used a SomaLogic platform targeting approximately 5000 proteins to generate a serum protein signature of centenarians that we validated in independent studies that used the same technology. We set here to validate and possibly expand the results by profiling the serum proteome of a subset of individuals included in the original study using liquid chromatography tandem mass spectrometry (LC-MS/MS). Following pre-processing, the LC-MS/MS data provided quantification of 398 proteins, with only 266 proteins shared by both platforms.

View Article and Find Full Text PDF

Ion mobility-mass spectrometry (IM-MS) is a powerful analytical tool for structural characterization. IM measurement provides collision cross section (CCS) values that facilitate analyte identification. While CCS values can be directly calculated from mobility measurements obtained using drift tube ion mobility spectrometry (DT-IMS), this method has limited mobility resolution due to the practical constraints on the length of the ion drift path.

View Article and Find Full Text PDF

In previous work we used a Somalogic platform targeting approximately 5000 proteins to generate a serum protein signature of centenarians that we validated in independent studies that used the same technology. We set here to validate and possibly expand the results by profiling the serum proteome of a subset of individuals included in the original study using liquid chromatography tandem mass spectrometry (LC-MS/MS). Following pre-processing, the LC-MS/MS data provided quantification of 398 proteins, with only 266 proteins shared by both platforms.

View Article and Find Full Text PDF

IgG Fc -glycosylation is necessary for effector functions and is an important component of quality control. The choice of antibody manufacturing platform has the potential to significantly influence the Fc glycans of an antibody and consequently alter their activity and clinical profile. The Human Contraception Antibody (HCA) is an IgG1 antisperm monoclonal antibody (mAb) currently in clinical development as a novel, non-hormonal contraceptive.

View Article and Find Full Text PDF

Fibromyalgia is a centralized pain syndrome characterized by widespread pain, fatigue, sleep and sensory issues. Fibromyalgia is present in up to 8% of the global population, disproportionally affecting females. Research acknowledges that patients with similar rheumatic/neurological disorders experience eating, drinking and swallowing difficulties.

View Article and Find Full Text PDF

Glycosylation is widely recognized as the most complex post-translational modification due to the widespread presence of macro- and microheterogeneities, wherein its biological consequence is closely related to both the glycosylation sites and the glycan fine structures. Yet, efficient site-specific detailed glycan characterization remains a significant analytical challenge. Here, utilizing an Orbitrap-Omnitrap platform, higher-energy electron-activated dissociation (heExD) tandem mass spectrometry (MS/MS) revealed extraordinary efficacy for the structural characterization of intact glycopeptides.

View Article and Find Full Text PDF

Cardiovascular complications are major clinical hallmarks of acute and post-acute coronavirus disease 2019 (COVID-19). However, the mechanistic details of SARS-CoV-2 infectivity of endothelial cells remain largely unknown. Here, we demonstrate that the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein shares a similarity with the proline-rich binding ena/VASP homology (EVH1) domain and identified the endoplasmic reticulum (ER) resident calreticulin (CALR) as an S-RBD interacting protein.

View Article and Find Full Text PDF

Gangliosides are glycosphingolipids composed of an oligosaccharide that contains one or more sialic acid residues and is linked to a ceramide, a lipid composed of a long chain base (LCB) that bears an amide-linked fatty acyl group (FA). The ceramide portions of gangliosides are embedded in cell membranes; the exposed glycans interact with the extracellular environment. Gangliosides play a myriad of roles in activities such as cell-cell communication, formation of lipid rafts, cellular adhesion, calcium homeostasis, host-pathogen interaction, and viral invasion.

View Article and Find Full Text PDF

In their recent Angewandte Chemie publication (doi: 10.1002/anie.202112063), Cen, Wang, Zhou et al.

View Article and Find Full Text PDF

BACKGROUNDAutoimmune diseases often have strong genetic associations with specific HLA-DR alleles. The synovial lesion in chronic inflammatory forms of arthritis shows marked upregulation of HLA-DR molecules, including in postinfectious Lyme arthritis (LA). However, the identity of HLA-DR-presented peptides, and therefore the reasons for these associations, has frequently remained elusive.

View Article and Find Full Text PDF

Comprehensive glycan sequencing remains an elusive goal due to the structural diversity and complexity of glycans. Present strategies employing collision-induced dissociation (CID) and higher energy collisional dissociation (HCD)-based multi-stage tandem mass spectrometry (MS) or MS/MS combined with sequential exoglycosidase digestions are inherently low-throughput and difficult to automate. Compared to CID and HCD, electron transfer dissociation (ETD) and electron capture dissociation (ECD) each generate more cross-ring cleavages informative about linkage positions, but electronic excitation dissociation (EED) exceeds the information content of all other methods and is also applicable to analysis of singly charged precursors.

View Article and Find Full Text PDF

Objective: Obesity is a complex disorder and is linked to chronic diseases such as type 2 diabetes. Major intrinsically disordered NOTCH2-associated receptor2 (MINAR2) is an understudied protein with an unknown role in obesity and metabolism. The purpose of this study was to determine the impact of Minar2 on adipose tissues and obesity.

View Article and Find Full Text PDF

Objective: Terminal glycans on the Fc portion of IgG antibodies are critical for antibody-triggered, proinflammatory or antiinflammatory responses. We undertook this study to compare glycan profiles of total IgG1 and Borrelia burgdorferi (Bb)-specific IgG1 antibodies in patients with oral antibiotic-responsive or antibiotic-refractory Lyme arthritis (LA).

Methods: Following affinity-column processing, glycan profiles of IgG antibodies were determined in serum and synovial fluid (SF) samples of 21 LA patients using glycoblotting with hydrazide glycan enrichment and determination of glycan structure by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

View Article and Find Full Text PDF

O-GlcNAcylation is a prominent modification of nuclear and cytoplasmic proteins in animals and plants and is mediated by a single O-GlcNAc transferase (OGT). Spindly (Spy), a paralog of OGT first discovered in higher plants, has an ortholog in the apicomplexan parasite Toxoplasma gondii, and both enzymes are now recognized as O-fucosyltransferases (OFTs). Here we investigate the evolution of spy-like genes and experimentally confirm OFT activity in the social amoeba Dictyostelium-a protist that is more related to fungi and metazoa.

View Article and Find Full Text PDF

FtmOx1 is a nonheme iron (NHFe) endoperoxidase, catalyzing three disparate reactions, endoperoxidation, alcohol dehydrogenation, and dealkylation, under in vitro conditions; the diversity complicates its mechanistic studies. In this study, we use two substrate analogues to simplify the FtmOx1-catalyzed reaction to either a dealkylation or an alcohol dehydrogenation reaction for structure-function relationship analysis to address two key FtmOx1 mechanistic questions: (1) Y224 flipping in the proposed COX-like model vs α-ketoglutarate (αKG) rotation proposed in the CarC-like mechanistic model and (2) the involvement of a Y224 radical (COX-like model) or a Y68 radical (CarC-like model) in FtmOx1-catalysis. When 13-oxo-fumitremorgin B () is used as the substrate, FtmOx1-catalysis changes from the endoperoxidation to a hydroxylation reaction and leads to dealkylation.

View Article and Find Full Text PDF

Primary myelofibrosis (PMF) is a neoplasm prone to leukemic transformation, for which limited treatment is available. Among individuals diagnosed with PMF, the most prevalent mutation is the JAK2V617F somatic point mutation that activates the Janus kinase 2 (JAK2) enzyme. Our earlier reports on hyperactivity of β1 integrin and enhanced adhesion activity of the α2β1 complex in JAK2V617F megakaryocytes (MKs) led us to examine the new hypothesis that this mutation leads to posttranslational modification via changes in glycosylation.

View Article and Find Full Text PDF

Glycan structure identification is essential to understanding the roles of glycans in various biological processes. Previously, we developed GlycoDeNovo, a algorithm for reconstructing glycan topologies from tandem mass spectra (MS/MS). In this work, we introduce GlycoDeNovo2 that contains two major improvements to GlycoDeNovo.

View Article and Find Full Text PDF

SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin-converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for SARS-CoV-2 on human endothelial cells.

View Article and Find Full Text PDF

The cell wall integrity (CWI) signaling pathway is best known for its roles in cell wall biogenesis. However, it is also thought to participate in the response to genotoxic stress. The stress-activated protein kinase Mpk1 (Slt2, is activated by DNA damaging agents through an intracellular mechanism that does not involve the activation of upstream components of the CWI pathway.

View Article and Find Full Text PDF

Background: The cell adhesion molecule transmembrane and immunoglobulin (Ig) domain containing1 (TMIGD1) is a novel tumor suppressor that plays important roles in regulating cell-cell adhesion, cell proliferation and cell cycle. However, the mechanisms of TMIGD1 signaling are not yet fully elucidated.

Results: TMIGD1 binds to the ERM family proteins moesin and ezrin, and an evolutionarily conserved RRKK motif on the carboxyl terminus of TMIGD1 mediates the interaction of TMIGD1 with the N-terminal ERM domains of moesin and ezrin.

View Article and Find Full Text PDF

As the COVID-19 pandemic continues to spread, investigating the processes underlying the interactions between SARS-CoV-2 and its hosts is of high importance. Here, we report the identification of CD209L/L-SIGN and the related protein CD209/DC-SIGN as receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed prominent expression of CD209L in the lung and kidney epithelia and endothelia.

View Article and Find Full Text PDF

Objective: We previously identified HLA-DR-presented epitopes from a 27-kd protein of Prevotella copri (Pc) obtained from peripheral blood mononuclear cells (PBMCs) from 1 rheumatoid arthritis (RA) patient. Herein, we sought to identify other HLA-DR-presented Pc peptides and source proteins in PBMCs from additional patients to better understand Pc immune responses and RA disease pathogenesis.

Methods: Using tandem mass spectrometry, we searched for HLA-DR-presented Pc peptides in PBMCs from RA and Lyme arthritis (LA) patients.

View Article and Find Full Text PDF

Using samples from the New England Centenarian Study (NECS), we sought to characterize the serum proteome of 77 centenarians, 82 centenarians' offspring, and 65 age-matched controls of the offspring (mean ages: 105, 80, and 79 years). We identified 1312 proteins that significantly differ between centenarians and their offspring and controls (FDR < 1%), and two different protein signatures that predict longer survival in centenarians and in younger people. By comparing the centenarian signature with 2 independent proteomic studies of aging, we replicated the association of 484 proteins of aging and we identified two serum protein signatures that are specific of extreme old age.

View Article and Find Full Text PDF