The Bromeliaceae family has been used as a model to study adaptive radiation due to its terrestrial, epilithic, and epiphytic habits with wide morpho-physiological variation. Functional groups described by Pittendrigh in 1948 have been an integral part of ecophysiological studies. In the current study, we revisited the functional groups of epiphytic bromeliads using a 204 species trait database sampled throughout the Americas.
View Article and Find Full Text PDFLand-use change can have profound effects on forest communities, compromising seedling recruitment and growth, and long-term persistence of forests on the landscape. Continued forest conversion to agriculture causes forest fragmentation which decreases forest size, increases edge effects and forest isolation, all of which negatively impact forest health. These fragmentation effects are magnified by human use of forests, which can compromise the continued persistence of species in these forests and the ability of the forests to support the communities that depend on them.
View Article and Find Full Text PDFMany studies suggest that global warming is driving species ranges poleward and toward higher elevations at temperate latitudes, but evidence for range shifts is scarce for the tropics, where the shallow latitudinal temperature gradient makes upslope shifts more likely than poleward shifts. Based on new data for plants and insects on an elevational transect in Costa Rica, we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming. We conclude that tropical lowland biotas may face a level of net lowland biotic attrition without parallel at higher latitudes (where range shifts may be compensated for by species from lower latitudes) and that a high proportion of tropical species soon faces gaps between current and projected elevational ranges.
View Article and Find Full Text PDFTropical ferns are characterized by a high diversity of plant life forms, yet there have been few large-scale studies on the functional ecology of these different forms. We examined epiphytic, hemiepiphytic, and terrestrial ferns, and asked whether there are differences in the mineral nutrition and water relations across different growth forms of a diverse assemblage of species. We measured specific leaf area, leaf nitrogen concentrations, and natural abundance of the stable isotopes delta(15)N and delta(13)C of 48 fern species from 36 genera across a wide range of habitats at La Selva Biological Station in Costa Rica.
View Article and Find Full Text PDF