Publications by authors named "Catherine Blanpied"

Opioid-dependent immune-mediated analgesic effects have been broadly reported upon inflammation. In preclinical mouse models of intestinal inflammatory diseases, the local release of enkephalins (endogenous opioids) by colitogenic T lymphocytes alleviate inflammation-induced pain by down-modulating gut-innervating nociceptor activation in periphery. In this study, we wondered whether this immune cell-derived enkephalin-mediated regulation of the nociceptor activity also operates under steady state conditions.

View Article and Find Full Text PDF

Current analgesic treatments for Interstitial CystitisBladder Pain Syndrome (IC/BPS) are limited. Here, we propose a novel antinociceptive strategy exploiting the opioid-mediated analgesic properties of T lymphocytes to relieve from bladder pain. In a chronic model of IC/BPS in rats, we show that a secondary T cell response against intravesically administered ovalbumin prevents from visceral pain in OVA-primed animals.

View Article and Find Full Text PDF

Background: Inflammatory visceral pain is endogenously controlled by enkephalins locally released by mucosal CD4 T lymphocytes in mice. The present study aimed at identifying opioid receptor(s) expressed on nociceptive sensory nerves involved in this peripheral opioid-mediated analgesia.

Methods: The peripheral analgesia associated with the accumulation of CD4 T lymphocytes within the inflamed colonic mucosa was assessed in conditional knockout mice specifically deleted for either of the two opioid receptors for enkephalins (i.

View Article and Find Full Text PDF

Mucosal CD4 T lymphocytes display a potent opioid-mediated analgesic activity in interleukin (IL)-10 knockout mouse model of inflammatory bowel diseases (IBD). Considering that endogenous opioids may also exhibit anti-inflammatory activities in the periphery, we examined the consequences of a peripheral opioid receptor blockade by naloxone-methiodide, a general opioid receptor antagonist unable to cross the blood-brain barrier, on the development of piroxicam-accelerated colitis in IL-10-deficient (IL-10) mice. Here, we show that IL-10-deficient mice treated with piroxicam exhibited significant alterations of the intestinal barrier function, including permeability, inflammation-related bioactive lipid mediators, and mucosal CD4 T lymphocyte subsets.

View Article and Find Full Text PDF

Background And Aims: Intestinal epithelial cells [IECs] from inflammatory bowel disease [IBD] patients exhibit an excessive induction of endoplasmic reticulum stress [ER stress] linked to altered intestinal barrier function and inflammation. Colonic tissues and the luminal content of IBD patients are also characterized by increased serine protease activity. The possible link between ER stress and serine protease activity in colitis-associated epithelial dysfunctions is unknown.

View Article and Find Full Text PDF

Objective: Data from clinical research suggest that certain probiotic bacterial strains have the potential to modulate colonic inflammation. Nonetheless, these data differ between studies due to the probiotic bacterial strains used and the poor knowledge of their mechanisms of action.

Design: By mass-spectrometry, we identified and quantified free long chain fatty acids (LCFAs) in probiotics and assessed the effect of one of them in mouse colitis.

View Article and Find Full Text PDF

Background: The opioid-mediated analgesic activity of mucosal CD4 T lymphocytes in colitis has been reported in immunocompetent mice so far. Here, we investigated whether CD4 T lymphocytes alleviate from inflammation-induced abdominal pain in mice with defective immune regulation.

Methods: Endogenous control of visceral pain by opioids locally produced in inflamed mucosa was assessed in IL-10-deficient mice.

View Article and Find Full Text PDF

The Focal adhesion kinase (FAK) is a ubiquitous cytoplasmic tyrosine-kinase promoting tumor progression and metastasis processes by acting in cancer cells and their tumor microenvironment partners. FAK overexpression in primary colon tumors and their metastasis is associated to poor colorectal cancer (CRC) patients' outcome. Eight FAK mRNA alternative splice variants have been described and contribute to additional level of FAK activity regulation, some of them corresponding to overactivated FAK isoforms.

View Article and Find Full Text PDF
Article Synopsis
  • The infection process begins when macrophages engulf infective promastigotes, but the parasite has evolved ways to manipulate these immune cells.
  • During the study, the team examined how different stages of the parasite produce lipid metabolites and their role in modifying macrophage behavior.
  • Results showed that infective stages increased specific fatty acid metabolites, directing macrophages toward a M2 proresolving phenotype, which suppresses the inflammatory M1 response.
View Article and Find Full Text PDF

Background & Aims: Irritable bowel syndrome (IBS) is a multifactorial disease arising from a complex interplay between genetic predisposition and environmental influences. To date, environmental triggers are not well known. Aluminum is commonly present in food, notably by its use as food additive.

View Article and Find Full Text PDF

T lymphocytes play a pivotal role in endogenous regulation of inflammatory visceral pain. The analgesic activity of T lymphocytes is dependent on their production of opioids, a property acquired on antigen activation. Accordingly, we investigated whether an active recruitment of T lymphocytes within inflamed colon mucosa via a local vaccinal strategy may counteract inflammation-induced visceral pain in mice.

View Article and Find Full Text PDF

Background: Endogenous opioids, including enkephalins, are fundamental regulators of pain. In inflammatory conditions, the local release of opioids by leukocytes at the inflammatory site inhibits nociceptor firing, thereby inducing analgesia. Accordingly, in chronic intestinal T1/T17-associated inflammation, enkephalins released by colitogenic CD4 T lymphocytes relieve inflammation-induced visceral pain.

View Article and Find Full Text PDF

Background: T cell-derived opioids play a key role in the control of inflammatory pain. However, the nature of opioids produced by T cells is still matter of debate in mice. Whereas β-endorphin has been found in T lymphocytes by using antibody-based methods, messenger RNA (mRNA) quantification shows mainly mRNA encoding for enkephalins.

View Article and Find Full Text PDF

Background & Aims: A dysregulated response of CD4(+) T cells against the microbiota contributes to the development of inflammatory bowel disease. Effector CD4(+) T cells, generated in response to microbe-derived antigens, can reduce somatic inflammatory pain through the local release of opioids. We investigated whether colitogenic CD4(+) T cells that accumulate in the inflamed colon also produce opioids and are able to counteract inflammation-induced visceral pain in mice.

View Article and Find Full Text PDF

Effector CD4(+) T lymphocytes generated in response to antigens produce endogenous opioids. Thus, in addition to their critical role in host defenses against pathogens, effector CD4(+) T lymphocytes contribute to relieving inflammatory pain. In this study, we investigated mechanisms of opioid release by antigen-experienced effector CD4(+) T cells that leave draining lymph nodes and come back into the inflammatory site.

View Article and Find Full Text PDF

Pain is an inherent component of inflammation often accompanying immune response. A large spectrum of molecules released within the inflamed tissue induces pain by stimulating primary afferent neurons in situ. Activity of primary sensitive fibers can be counteracted by local opioid release by leukocytes.

View Article and Find Full Text PDF

Endogenous opioid peptides mainly produced by neurons are also released by immune cells. They bind to mu- (mu-opioid receptor, MOR), delta-, and kappa-opioid receptors. On the basis of studies on mice showing that MOR is the main mediator of the deleterious effects of opioids on immunity, we wondered whether MOR, absent under normal conditions, is expressed in some pathological situations such as lymphomas.

View Article and Find Full Text PDF

A number of studies have been dedicated to estimate the consequences on immunity of the clinical use of opioids by focusing on mitogen-induced polyclonal proliferation of T cells from blood or spleen. Here we examined, under physiological conditions, the contribution of endogenous opioids in the development of a CD4(+) T cell response within draining lymph nodes. We show in OVA-primed DO11.

View Article and Find Full Text PDF

Fas (CD95)-induced hepatocyte apoptosis and cytotoxic activity of neutrophils infiltrating the injured liver are two major events leading to hepatitis. Because it has been reported that opioids, via a direct interaction, sensitize splenocytes to Fas-mediated apoptosis by upregulating Fas messenger RNA (mRNA) and modulated neutrophil activity, we assumed that opioids may participate in the pathophysiology of hepatitis. Using the hepatitis model induced by agonistic anti-Fas antibody in mice, we showed that opioid receptor blockade reduced liver damage and consequently increased the survival rate of animals when the antagonist naltrexone was injected simultaneously or prior to antibody administration.

View Article and Find Full Text PDF

We previously observed the presence of anti-human mu-opioid-receptor (anti-hMOR) autoantibodies in IgG pools prepared from several thousand healthy blood donors. These autoantibodies behaved agonistically because of their ability to bind to the first and third extracellular loops of the receptor. In this study, we found that each healthy donor's serum contained anti-hMOR IgG autoantibodies with a specific activity against both the first and the third extracellular loops of the receptor.

View Article and Find Full Text PDF