Publications by authors named "Catherine Badger"

Unlabelled: COVID-19 emergency use authorizations and approvals for vaccines were achieved in record time. However, there remains a need to develop additional safe, effective, easy-to-produce, and inexpensive prevention to reduce the risk of acquiring SARS-CoV-2 infection. This need is due to difficulties in vaccine manufacturing and distribution, vaccine hesitancy, and, critically, the increased prevalence of SARS-CoV-2 variants with greater contagiousness or reduced sensitivity to immunity.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody.

View Article and Find Full Text PDF

We have previously shown that DNA vaccines expressing codon optimized alphavirus envelope glycoprotein genes protect both mice and nonhuman primates from viral challenge when delivered by particle-mediated epidermal delivery (PMED) or intramuscular (IM) electroporation (EP). Another technology with fewer logistical drawbacks is disposable syringe jet injection (DSJI) devices developed by PharmaJet, Inc. These needle-free jet injection systems are spring-powered and capable of delivering vaccines either IM or into the dermis (ID).

View Article and Find Full Text PDF

Unlabelled: SARS-CoV-2 neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization when administered early during COVID-19 disease. However, the emergence of variants of concern has negatively impacted the therapeutic use of some authorized mAbs. Using a high throughput B-cell screening pipeline, we isolated a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody called LY-CoV1404 (also known as bebtelovimab).

View Article and Find Full Text PDF

Purpose Of Review: This review is aimed at highlighting recent research and articles on the complicated relationship between virus, vector, and host and how biosurveillance at each level informs disease spread and risk.

Recent Findings: While human cases of CCHFV and tick identification in non-endemic areas in 2019-2020 were reported to sites such as ProMed, there is a gap in recent published literature on these and broader CCHFV surveillance efforts from the late 2010s.

Summary: A review of the complex aspects of CCHFV maintenance in the environment coupled with high fatality rate and lack of vaccines and therapeutics warrants the need for a One-Health approach toward detection and increased biosurveillance programs for CCHFV.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus that causes severe hemorrhagic fever disease in humans. Currently, no licensed CCHF vaccines exist, and the protective epitopes remain unclear. Previously, we tested a DNA vaccine expressing the M-segment glycoprotein precursor gene of the laboratory CCHFV strain IbAr 10200 (CCHFV-M).

View Article and Find Full Text PDF

Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus that can cause debilitating, acute febrile illness and potentially result in encephalitis. Currently, there are no FDA-licensed vaccines or specific therapeutics for VEEV. Previous studies have demonstrated that VEEV infection results in increased blood-brain barrier (BBB) permeability that is mediated by matrix metalloproteinases (MMPs).

View Article and Find Full Text PDF
Article Synopsis
  • The emergence of SARS-CoV-2 has prompted the need for small animal models that accurately represent the disease in humans to help develop medical countermeasures.
  • Researchers evaluated male and female mice genetically modified to express human ACE2 and found that they developed severe disease after exposure to SARS-CoV-2, showing symptoms like weight loss and lung injury.
  • The study revealed that female mice had better survival rates than males after infection, with significant differences in inflammatory responses, establishing this model as crucial for understanding SARS-CoV-2 pathogenesis and testing treatments.
View Article and Find Full Text PDF

Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV) are mosquito-borne viruses in the Americas that cause central nervous system (CNS) disease in humans and equids. In this study, we directly characterized the pathogenesis of VEEV, EEEV, and WEEV in cynomolgus macaques following subcutaneous exposure because this route more closely mimics natural infection via mosquito transmission or by an accidental needle stick. Our results highlight how EEEV is significantly more pathogenic compared to VEEV similarly to what is observed in humans.

View Article and Find Full Text PDF

There is a pressing need for sustainable and sensitive immunodiagnostics for use in public health efforts to understand and combat the threat of endemic and emerging infectious diseases. In this proof-of-concept work, we describe an immunodiagnostic approach based on the utilization of virus-like particles (VLPs) in a magnetic bead-based platform for multiplexed detection of antiviral humoral response. A retroviral-based VLP, that presents Venezuelan equine encephalitis virus E1/E2 glycoprotein antigen on its surface, was synthesized and coupled to magnetic beads to create VLP-conjugated microspheres (VCMs).

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model.

View Article and Find Full Text PDF

Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays.

View Article and Find Full Text PDF

The identification of an effective and tolerable delivery method is a necessity for the success of DNA vaccines in the clinic. This article describes the development and validation of a multi-headed intradermal electroporation device which would be applicable for delivering multiple DNA vaccine plasmids simultaneously but spatially separated. Reporter gene plasmids expressing green and red fluorescent proteins were used to demonstrate the impact of spatial separation on DNA delivery to increase the number of transfected cells and avoid interference through visible expression patterns.

View Article and Find Full Text PDF

The identification of an effective and tolerable delivery method is a necessity for the success of DNA vaccines in the clinic. This manuscript describes the development and validation of a multi-headed intradermal electroporation device which would be applicable for delivering multiple DNA vaccine plasmids simultaneously but spatially separated. Reporter gene plasmids expressing green and red fluorescent proteins were used to demonstrate the impact of spatial separation on DNA delivery to increase the number of transfected cells and avoid interference through visible expression patterns.

View Article and Find Full Text PDF

For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm.

View Article and Find Full Text PDF

Lassa virus (LASV) causes a severe, often fatal, hemorrhagic fever endemic to West Africa. Presently, there are no FDA-licensed medical countermeasures for this disease. In a pilot study, we constructed a DNA vaccine (pLASV-GPC) that expressed the LASV glycoprotein precursor gene (GPC).

View Article and Find Full Text PDF

We evaluated the immunogenicity and protective efficacy of DNA vaccines expressing the codon-optimized envelope glycoprotein genes of Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus (Musoke and Ravn). Intramuscular or intradermal delivery of the vaccines in BALB/c mice was performed using the TriGrid™ electroporation device. Mice that received DNA vaccines against the individual viruses developed robust glycoprotein-specific antibody titers as determined by ELISA and survived lethal viral challenge with no display of clinical signs of infection.

View Article and Find Full Text PDF

To determine if DNA vaccines for two hantaviruses causing hemorrhagic fever with renal syndrome, Hantaan virus and Puumala virus, are immunogenic when given in combination, we delivered them to hamsters separately or as mixtures by gene gun or by electroporation. Both vaccines elicited neutralizing antibodies when given alone but when they were delivered as a mixture, antibodies to only one of the two hantaviruses could be detected. In contrast, if the DNAs were given as separate vaccinations to a single animal, responses to both were observed.

View Article and Find Full Text PDF

The Ebola virus (EBOV) envelope glycoprotein (GP) is the primary target of protective immunity. Mature GP consists of two disulfide-linked subunits, GP1 and membrane-bound GP2. GP is highly glycosylated with both N- and O-linked carbohydrates.

View Article and Find Full Text PDF