The abyssomicins are a structurally intriguing family of bioactive natural products that include compounds with potent antibacterial, antitumour and antiviral activities. The biosynthesis of the characteristic abyssomicin spirotetronate core occurs an enzyme-catalysed intramolecular Diels-Alder reaction, which proceeds one of two distinct stereochemical pathways to generate products differing in configuration at the C15 spirocentre. Using the purified spirotetronate cyclases AbyU (from abyssomicin C/atrop-abyssomicin C biosynthesis) and AbmU (from abyssomicin 2/neoabyssomicin biosynthesis), in combination with synthetic substrate analogues, here we show that stereoselectivity in the spirotetronate-forming [4 + 2]-cycloaddition is controlled by a combination of factors attributable to both the enzyme and substrate.
View Article and Find Full Text PDFThe Diels-Alder reaction is one of the most effective methods for the synthesis of substituted cyclohexenes. The development of protein catalysts for this reaction remains a major priority, affording new sustainable routes to high value target molecules. Whilst a small number of natural enzymes have been shown capable of catalysing [4 + 2] cycloadditions, there is a need for significant mechanistic understanding of how these prospective Diels-Alderases promote catalysis to underpin their development as biocatalysts for use in synthesis.
View Article and Find Full Text PDFStereoselective carbon-carbon bond forming reactions are quintessential transformations in organic synthesis. One example is the Diels-Alder reaction, a [4+2] cycloaddition between a conjugated diene and a dienophile to form cyclohexenes. The development of biocatalysts for this reaction is paramount for unlocking sustainable routes to a plethora of important molecules.
View Article and Find Full Text PDFThe deep sea is known to host novel bacteria with the potential to produce a diverse array of undiscovered natural products. Thus, understanding these bacteria is of broad interest in ecology and could also underpin applied drug discovery, specifically in the area of antimicrobials. Here, we isolate a new strain of from the tissue of the deep-sea sponge collected at a depth of 1869 m from the Gramberg Seamount in the Atlantic Ocean.
View Article and Find Full Text PDFBacterial fibrillar adhesins are specialized extracellular polypeptides that promote the attachment of bacteria to the surfaces of other cells or materials. Adhesin-mediated interactions are critical for the establishment and persistence of stable bacterial populations within diverse environmental niches and are important determinants of virulence. The fibronectin (Fn)-binding fibrillar adhesin CshA, and its paralogue CshB, play important roles in host colonization by the oral commensal and opportunistic pathogen Streptococcus gordonii.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
January 2023
Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2023
Abyssomicin C and its atropisomer are potent inhibitors of bacterial folate metabolism. They possess complex polycyclic structures, and their biosynthesis has been shown to involve several unusual enzymatic transformations. Using a combination of synthesis and in vitro assays we reveal that AbyV, a cytochrome P450 enzyme from the aby gene cluster, catalyses a key late-stage epoxidation required for the installation of the characteristic ether-bridged core of abyssomicin C.
View Article and Find Full Text PDFAntibiotics (Basel)
September 2022
Antibiotic resistance is a global health crisis. New classes of antibiotics that can treat drug-resistant infections are urgently needed. To communicate this message, researchers have used antibiotic development timelines, but these are often contradictory or imprecise.
View Article and Find Full Text PDFis an opportunistic pathogen that is able to thwart an effective host immune response by producing a range of immune evasion molecules, including binder of IgG (Sbi) which interacts directly with the central complement component C3, its fragments and associated regulators. Recently we reported the first structure of a disulfide-linked human C3d dimer and highlighted its potential role in modulating B-cell activation. Here we present an X-ray crystal structure of a disulfide-linked human C3d dimer, which undergoes a structurally stabilising N-terminal 3D domain swap when in complex with Sbi.
View Article and Find Full Text PDFCleavage of C3 to C3a and C3b plays a central role in the generation of complement-mediated defences. Although the thioester-mediated surface deposition of C3b has been well-studied, fluid phase dimers of C3 fragments remain largely unexplored. Here we show C3 cleavage results in the spontaneous formation of C3b dimers and present the first X-ray crystal structure of a disulphide-linked human C3d dimer.
View Article and Find Full Text PDFTo tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition.
View Article and Find Full Text PDFComplex polyketides of bacterial origin are biosynthesised by giant assembly-line like megaenzymes of the type 1 modular polyketide synthase (PKS) class. The trans-AT family of modular PKSs, whose biosynthetic frameworks diverge significantly from those of the archetypal cis-AT type systems represent a new paradigm in natural product enzymology. One of the most distinctive enzymatic features common to trans-AT PKSs is their ability to introduce methyl groups at positions β to the thiol ester in the growing polyketide chain.
View Article and Find Full Text PDFThe deep ocean is the largest habitat for life on Earth, though the microorganisms that occupy this unique environmental niche remain largely unexplored. Due to the significant logistical and operational challenges associated with accessing the deep ocean, bioprospecting programmes that seek to generate novel products from marine organisms have, to date, focused predominantly on samples recovered from shallow seas. For this reason, the deep ocean remains a largely untapped resource of novel microbiological life and associated natural products.
View Article and Find Full Text PDFThe cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans.
View Article and Find Full Text PDFWe present a new cell membrane modification methodology where the inherent heart tissue homing properties of the infectious bacteria are transferred to human stem cells. This is achieved the rational design of a chimeric protein-polymer surfactant cell membrane binding construct, comprising the cardiac fibronectin (Fn) binding domain of the bacterial adhesin protein CshA fused to a supercharged protein. Significantly, the protein-polymer surfactant hybrid spontaneously inserts into the plasma membrane of stem cells without cytotoxicity, instilling the cells with a high affinity for immobilized fibronectin.
View Article and Find Full Text PDFCo-ligation of the B cell antigen receptor with complement receptor 2 on B-cells via a C3d-opsonised antigen complex significantly lowers the threshold required for B cell activation. Consequently, fusions of antigens with C3d polymers have shown great potential in vaccine design. However, these linear arrays of C3d multimers do not mimic the natural opsonisation of antigens with C3d.
View Article and Find Full Text PDFAdherence of bacteria to biotic or abiotic surfaces is a prerequisite for host colonization and represents an important step in microbial pathogenicity. This attachment is facilitated by bacterial adhesins at the cell surface. Because of their size and often elaborate multidomain architectures, these polypeptides represent challenging targets for detailed structural and functional characterization.
View Article and Find Full Text PDFA range of Streptococcus bacteria are able to interact with blood platelets to form a thrombus (clot). Streptococcus gordonii is ubiquitous within the human oral cavity and amongst the common pathogens isolated from subjects with infective endocarditis. Two cell surface proteins, Hsa and Platelet adherence protein A (PadA), in S.
View Article and Find Full Text PDF