Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel.
View Article and Find Full Text PDFTocopherols, tocotrienols, and plastochromanols (collectively termed tocochromanols) are lipid-soluble antioxidants synthesized by all plants. Their dietary intake, primarily from seed oils, provides vitamin E and other health benefits. Tocochromanol biosynthesis has been dissected in the dicot , which has green, photosynthetic seeds, but our understanding of tocochromanol accumulation in major crops, whose seeds are nonphotosynthetic, remains limited.
View Article and Find Full Text PDFQuantification of genotype-to-phenotype associations is central to many scientific investigations, yet the ability to obtain consistent results may be thwarted without appropriate statistical analyses. Models for association can consider confounding effects in the materials and complex genetic interactions. Selecting optimal models enables accurate evaluation of associations between marker loci and numerous phenotypes including gene expression.
View Article and Find Full Text PDFEfforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact.
View Article and Find Full Text PDFThe improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations.
View Article and Find Full Text PDFGenetic control of maize grain carotenoid profiles is coordinated through several loci distributed throughout three secondary metabolic pathways, most of which exhibit additive, and more importantly, pleiotropic effects. The genetic basis for the variation in maize grain carotenoid concentrations was investigated in two F2:3 populations, DEexp × CI7 and A619 × SC55, derived from high total carotenoid and high β-carotene inbred lines. A comparison of grain carotenoid concentrations from population DEexp × CI7 grown in different environments revealed significantly higher concentrations and greater trait variation in samples harvested from a subtropical environment relative to those from a temperate environment.
View Article and Find Full Text PDFBreeding to increase beta-carotene levels in cereal grains, termed provitamin A biofortification, is an economical approach to address dietary vitamin A deficiency in the developing world. Experimental evidence from association and linkage populations in maize (Zea mays L.) demonstrate that the gene encoding beta-carotene hydroxylase 1 (crtRB1) underlies a principal quantitative trait locus associated with beta-carotene concentration and conversion in maize kernels.
View Article and Find Full Text PDFDietary vitamin A deficiency causes eye disease in 40 million children each year and places 140 to 250 million at risk for health disorders. Many children in sub-Saharan Africa subsist on maize-based diets. Maize displays considerable natural variation for carotenoid composition, including vitamin A precursors alpha-carotene, beta-carotene, and beta-cryptoxanthin.
View Article and Find Full Text PDF