Publications by authors named "Catherine Astier"

Background: A model of peanut food allergy has been developed in mice using a simple sensitization protocol leading to a quantitatively measurable allergic response.

Methods: C3H/HeJ mice received a single intragastric administration of whole peanut (80 mg) without adjuvant. Two weeks later, intraperitoneal challenge with peanut extract led to a severe anaphylaxis.

View Article and Find Full Text PDF

Calpains have been proposed to be involved in the cytoskeletal remodeling and wasting of skeletal muscle. However, limited data are available about the specific involvement of each calpain in the early stages of muscle atrophy. The aims of this study were to determine whether calpains 1 and 2 are autolyzed after a short period of muscle disuse, and, if so, where in the myofibers the autolyzed products are localized.

View Article and Find Full Text PDF

Background: Current diagnosis of peanut allergy relies on natural extracts that lack standardization. Recombinant DNA technology allows production of pure biochemically characterized proteins. Their usefulness for peanut allergy diagnosis is not established.

View Article and Find Full Text PDF

Titin is known to interact with actin thin filaments within the I-band region of striated muscle sarcomeres. In this study, we have used a titin fragment of 800 kDa (T800) purified from striated skeletal muscle to measure the effect of this interaction on the functional properties of the actin-myosin complex. MALDI-TOF MS revealed that T800 contains the entire titin PEVK (Pro, Glu, Val, Lys-rich) domain.

View Article and Find Full Text PDF

Titin is a giant molecule that spans half a sarcomere, establishing several specific bindings with both structural and contractile myofibrillar elements. It has been demonstrated that this giant protein plays a major role in striated muscle cell passive tension and contractile filament alignment. The in vitro interaction of titin with a new partner (tropomyosin) reported here is reinforced by our recent in vitro motility study using reconstituted Ca-regulated thin filaments, myosin and a native 800-kDa titin fragment.

View Article and Find Full Text PDF