Publications by authors named "Catherine A Wassenaar"

Genome-wide association studies (GWAS) of complex behavioural phenotypes such as cigarette smoking typically employ self-report phenotypes. However, precise biomarker phenotypes may afford greater statistical power and identify novel variants. Here we report the results of a GWAS meta-analysis of levels of cotinine, the primary metabolite of nicotine, in 4,548 daily smokers of European ancestry.

View Article and Find Full Text PDF

CYP2A6 genotyping is of clinical importance--CYP2A6 gene variants influence nicotine metabolism and are associated with nicotine dependence, cigarettes per day, smoking cessation and the risk for tobacco-associated cancers. CYP2A6 gene variants also influence the metabolism of therapeutic drugs, such as the anticancer agents, tegafur and letrozole. Over the years, CYP2A6 genotyping methods have evolved to incorporate novel gene variants and to circumvent genotyping errors resulting from the high degree of homology between CYP2A6 and neighboring CYP2A genes.

View Article and Find Full Text PDF

We investigated genetic variation in CYP2A6 in relation to lung cancer risk among African American smokers, a high-risk population. Previously, we found that CYP2A6, a nicotine/nitrosamine metabolism gene, was associated with lung cancer risk in European Americans, but smoking habits, lung cancer risk and CYP2A6 gene variants differ significantly between European and African ancestry populations. Herein, African American ever-smokers, drawn from two independent lung cancer case-control studies, were genotyped for reduced activity CYP2A6 alleles and grouped by predicted metabolic activity.

View Article and Find Full Text PDF

Background: Identifying sources of variation in the nicotine and nitrosamine metabolic inactivation pathways is important to understanding the relationship between smoking and cancer risk. Numerous UGT1A and UGT2B enzymes are implicated in nicotine and nitrosamine metabolism in vitro; however, little is known about their roles in vivo.

Methods: Within UGT1A1, UGT1A4, UGT1A9, UGT2B7, UGT2B10, and UGT2B17, 47 variants were genotyped, including UGT2B10*2 and UGT2B17*2.

View Article and Find Full Text PDF

We explored the contribution of nitrosamine metabolism to lung cancer in a pilot investigation of genetic variation in CYP2B6, a high-affinity enzymatic activator of tobacco-specific nitrosamines with a negligible role in nicotine metabolism. Previously we found that variation in CYP2A6 and CHRNA5-CHRNA3-CHRNB4 combined to increase lung cancer risk in a case-control study in European American ever-smokers (n = 860). However, these genes are involved in the pharmacology of both nicotine, through which they alter smoking behaviours, and carcinogenic nitrosamines.

View Article and Find Full Text PDF

Genetic variations in the CYP2A6 nicotine metabolic gene and the CHRNA5-CHRNA3-CHRNB4 (CHRNA5-A3-B4) nicotinic gene cluster have been independently associated with lung cancer. With genotype data from ever-smokers of European ancestry (417 lung cancer patients and 443 control subjects), we investigated the relative and combined associations of polymorphisms in these two genes with smoking behavior and lung cancer risk. Kruskal-Wallis tests were used to compare smoking variables among the different genotype groups, and odds ratios (ORs) for cancer risk were estimated using logistic regression analysis.

View Article and Find Full Text PDF