Publications by authors named "Catherine A Osborne"

A large soil CO2 pulse is associated with rewetting soils after the dry summer period under a Mediterranean-type climate, significantly contributing to grasslands' annual carbon budget. Rapid reactivation of soil heterotrophs and a pulse of available carbon are both required to fuel the CO2 pulse. Understanding of the effects of altered summer precipitation on the metabolic state of indigenous microorganisms may be important in predicting changes in carbon cycling.

View Article and Find Full Text PDF

T-RFLP profiling is a very effective method for comparing many samples in an environmental microbiology study, because fingerprints of microbial diversity can be generated in a sensitive, reproducible, and cost-effective manner. This protocol describes the steps required to generate T-RFLP profiles of the dominant members of a bacterial community, by PCR amplification of the bacterial 16S rRNA genes and three restriction endonuclease digests to generate three different profiles for each sample. The generation of multiple profiles per sample provides enough information to confidently differentiate rich environmental bacterial communities.

View Article and Find Full Text PDF

The microbial response to summer desiccation reflects adaptation strategies, setting the stage for a large rainfall-induced soil CO2 pulse upon rewetting, an important component of the ecosystem carbon budget. In three California annual grasslands, the present (DNA-based) and potentially active (RNA-based) soil bacterial and fungal communities were tracked over a summer season and in response to controlled rewetting of intact soil cores. Phylogenetic marker genes for bacterial (16S) and fungal (28S) RNA and DNA were sequenced, and the abundances of these genes and transcripts were measured.

View Article and Find Full Text PDF

To determine the influence of pooling strategies on detected soil bacterial communities, we sampled 45 soil cores each from a eucalypt woodland, a sown pasture and a revegetated site in an Australian landscape. We assessed the spatial variation within each land-use plot, including the influence of sampling distance, soil chemical characteristics and, where appropriate, proximity to trees on the soil bacterial community, by generating terminal restriction fragment length polymorphism profiles of the bacterial 16S rRNA genes. The soil bacterial community under the revegetated site was more similar to the original woodland than the pasture, and this result was found regardless of the soil- or the DNA-pooling strategy used.

View Article and Find Full Text PDF

Soil is exposed to hydrogen when symbiotic rhizobia in legume root nodules cannot recycle the hydrogen that is generated during nitrogen fixation. The hydrogen emitted is most likely taken up by free-living soil bacteria that use hydrogen as an energy source, though the bacteria that do this in situ remain unclear. In this study, we investigated the effect of hydrogen exposure on the bacteria of two different soils in a microcosm setup designed to simulate hydrogen-emitting root nodules.

View Article and Find Full Text PDF

Terminal restriction fragment length polymorphism (T-RFLP) analysis has the potential to be useful for comparisons of complex bacterial communities, especially to detect changes in community structure in response to different variables. To do this successfully, systematic variations have to be detected above method-associated noise, by standardizing data sets and assigning confidence estimates to relationships detected. We investigated the use of different standardizing methods in T-RFLP analysis of PCR-amplified 16S rRNA genes to elucidate the similarities between the bacterial communities in 17 soil and sediment samples.

View Article and Find Full Text PDF

Artefacts consisting of concatenated oligonucleotide primer sequences were generated during sub-optimally performing polymerase chain reaction amplification of bacterial 16S rRNA genes using a commonly employed primer pair. These artefacts were observed during amplification for terminal restriction fragment length polymorphism analyses of complex microbial communities, and after amplification from DNA from a microbial culture. Similar repetitive motifs were found in gene sequences deposited in GenBank.

View Article and Find Full Text PDF

Most soil bacteria belong to family-level phylogenetic groups with few or no known cultivated representatives. We cultured a collection of 350 isolates from soil by using simple solid media in petri dishes. These isolates were assigned to 60 family-level groupings in nine bacterial phyla on the basis of a comparative analysis of their 16S rRNA genes.

View Article and Find Full Text PDF