Publications by authors named "Catherine A Munro"

Objective: Delayed repair of peripheral nerve injuries often results in poor motor functional recovery. This may be a result of the deterioration or loss of endoneurial pathways in the distal nerve stump before motor axons can regenerate into the stump.

Methods: Using the rat femoral nerve, we protected distal endoneurial pathways of the saphenous nerve with either cross-suture of the quadriceps motor nerve (Group A) or resuture of the saphenous nerve (Group B) to compare later motor regeneration into the "protected" saphenous nerve pathway to chronic denervation and "unprotected" saphenous nerve (Group C).

View Article and Find Full Text PDF

Purpose: As alternatives to nerve grafts for peripheral nerve repair, we have synthesized 12 mm long poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (PHEMA-MMA) porous tubes and studied their regenerative capacity for the repair of surgically-created 10 mm rat sciatic nerve gaps. We compared the in vivo regenerative efficacy of these artificial tubes with the gold standard, the nerve autograft.

Methods: Tubes were assessed in vivo for their ability to support nerve regeneration at 4, 8, and 16 weeks post-implantation by histology, electrophysiology, histomorphometry, and reinnervated lateral gastrocnemius (LG) dry muscle mass.

View Article and Find Full Text PDF

Ingestion of tellurium (Te), a toxic element, produces paralysis of the hind limbs in weanling rats that is due to temporary, segmental demyelination of the sciatic nerves bilaterally. Weanling rats were fed a 1.1% elemental Te diet and sacrificed at various time points for histological and magnetic resonance (MR) analysis of the sciatic nerves.

View Article and Find Full Text PDF

Artificial grafts are promising alternatives to nerve grafts for peripheral nerve repair because they obviate the complications and disadvantages associated with autografting such as donor site morbidity and limited tissue availability. We have synthesized poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (PHEMA-MMA) porous tubes and studied their efficacy in vivo. Specifically, we studied the short- and long-term stability and biocompatibility of 12 mm long tubes for the repair of surgically created 10 mm nerve gaps in rat sciatic nerves.

View Article and Find Full Text PDF

Objective: Chemokines (chemoattractant cytokines) play a major role in trafficking of cells to areas of inflammation. Infiltration of allograft tissues by immunocompetent cells is critical for rejection of donor tissues. The role of chemokines in nerve allograft rejection is not clear.

View Article and Find Full Text PDF

Changes in the MR parameters of inflamed neural tissue were measured in vitro. Tumor necrosis factor-alpha (TNF-alpha) was injected into rat sciatic nerves to induce inflammation with negligible axonal loss and demyelination. The MR parameters, such as T1/T2 relaxation and magnetization transfer (MT), were measured 2 days after TNF-alpha injection and were found to be substantially different from those of normal nerves.

View Article and Find Full Text PDF

Object: The authors' long-term goal is repair of peripheral nerve injuries by using synthetic nerve guidance devices that improve both regeneration and functional outcome relative to an autograft. They report the in vitro processing and in vivo application of synthetic hydrogel tubes that are filled with collagen gel impregnated with growth factors.

Methods: Poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (PHEMA-MMA) porous 12-mm-long tubes with an inner diameter of 1.

View Article and Find Full Text PDF

Multicomponent T(2) relaxation of normal and injured rat sciatic nerve was measured. The T(2) relaxation was multiexponential, indicating the multicompartmental nature of T(2) decay in nerve tissue. The size of the short, observed T(2) component correlated very well with quantitative assessment of myelin using computer-assisted histopathological image analysis of myelin.

View Article and Find Full Text PDF

Motor axonal regeneration is compromised by chronic distal nerve stump denervation, induced by delayed repair or prolonged regeneration distance, suggesting that the pathway for regeneration is progressively impaired with time and/or distance. In the present experiments, we tested the impacts of (i) chronic distal sensory nerve stump denervation on axonal regeneration and (ii) sensory or motor innervation of a nerve graft on the ability of motoneurons to regenerate their axons from the opposite end of the graft. Using the motor and sensory branches of rat femoral nerve and application of neuroanatomical tracers, we evaluated the numbers of regenerated femoral motoneurons and nerve fibers when motoneurons regenerated (i) into freshly cut and 2-month chronically denervated distal sensory nerve stump, (ii) alone into a 4-cm-long distally ligated sensory autograft (MGL) and, (iii) concurrently as sensory (MGS) or motor (MGM) nerves regenerated into the same autograft from the opposite end.

View Article and Find Full Text PDF