Publications by authors named "Catherine A Harris"

We have become progressively more concerned about the quality of some published ecotoxicology research. Others have also expressed concern. It is not uncommon for basic, but extremely important, factors to apparently be ignored.

View Article and Find Full Text PDF

Background: The feminization of nature by endocrine-disrupting chemicals (EDCs) is a key environmental issue affecting both terrestrial and aquatic wildlife. A crucial and as yet unanswered question is whether EDCs have adverse impacts on the sustainability of wildlife populations. There is widespread concern that intersex fish are reproductively compromised, with potential population-level consequences.

View Article and Find Full Text PDF

Phthalate ester plasticizers are antiandrogenic in mammals. High doses of certain phthalates consistently interfere with the normal development of male offspring exposed in utero, causing disrupted sperm production, abnormal development of the genitalia, and in some cases infertility. In the environment, phthalates are considered ubiquitous and are commonly measured in aquatic ecosystems at low nanograms to micrograms per liter concentrations.

View Article and Find Full Text PDF

The effect of the presence of a surfactant on the activity of a mixture of environmental estrogens was assessed. In their natural habitat, fish are subject not only to exposure to mixtures of estrogenic compounds, as has been addressed in previous publications, but also to other confounding factors (chemical, physical and biological), which may, in theory, affect their responses to such compounds. To assess the potential for such interference, the commonly occurring surfactant, linear alkylbenzene sulfonate (LAS), was applied to the yeast estrogen screen at various concentrations, independently and together with a mixture of estrogens at constant concentrations.

View Article and Find Full Text PDF

Chemical risk assessment is fraught with difficulty due to the problem of accounting for the effects of mixtures. In addition to the uncertainty arising from chemical-to-chemical interactions, it is possible that environmental variables, such as temperature, influence the biological response to chemical challenge, acting as confounding factors in the analysis of mixture effects. Here, we investigate the effects of temperature on the response of fish to a defined mixture of estrogenic chemicals.

View Article and Find Full Text PDF

Benzotriazole (BT) is an anticorrosive agent well known for its use in aircraft deicing and antifreeze fluids but also used in dishwasher detergents. It is highly persistent in the environment; therefore, BT is frequently found in runoff emanating from large airports as well as in the surrounding groundwater. In addition, BT has recently been found to be ubiquitous in Swiss wastewater treatment plant effluents and their receiving waters; however, very little chronic toxicity data is available on which to base a sound ecological risk assessment of this chemical.

View Article and Find Full Text PDF

Recent research into the effects of mixtures of estrogenic chemicals has revealed the capacity for similarly acting chemicals to act in combination, according to the principles of concentration addition. This means that, collectively, they may pose a significant environmental risk, even when each component is present at a low and individually ineffective concentration. The aim of this study was to investigate the ecological significance of mixture effects at low-effect concentrations by assessing the combined effect of estrogenic chemicals on the reproductive performance of fish.

View Article and Find Full Text PDF

Existing environmental risk assessment procedures are limited in their ability to evaluate the combined effects of chemical mixtures. We investigated the implications of this by analyzing the combined effects of a multicomponent mixture of five estrogenic chemicals using vitellogenin induction in male fathead minnows as an end point. The mixture consisted of estradiol, ethynylestradiol, nonylphenol, octylphenol, and bisphenol A.

View Article and Find Full Text PDF