Cytochrome P450 catalyzes the hydroxylation and/or epoxidation of fatty acids, fatty amides, and alcohols. Protein engineering has produced P450 variants capable of accepting drug molecules normally metabolized by human P450 enzymes. The enhanced substrate promiscuity has been attributed to the greater flexibility of the lid of the substrate channel.
View Article and Find Full Text PDFCytochrome P450s are key players in drug metabolism, and overexpression in tumors is associated with significant resistance to many medicinal agents. Consequently, inhibition of P450s could serve as a strategy to restore drug efficacy. However, the widespread expression of P450s throughout the human body and the critical roles they play in various biosynthetic pathways motivates the development of P450 inhibitors capable of controlled local administration.
View Article and Find Full Text PDFCytochrome P450BM3 is a heme-containing enzyme from Bacillus megaterium that exhibits high monooxygenase activity and has a self-sufficient electron transfer system in the full-length enzyme. Its potential synthetic applications drive protein engineering efforts to produce variants capable of oxidizing nonnative substrates such as pharmaceuticals and aromatic pollutants. However, promiscuous P450BM3 mutants often exhibit lower stability, thereby hindering their industrial application.
View Article and Find Full Text PDF