Introduction: The neurodevelopmental disorder fragile X syndrome (FXS) is the most common monogenic cause of intellectual disability associated with autism spectrum disorder. Inaccessibility to developing human brain cells is a major barrier to studying FXS. Direct-to-neural precursor reprogramming provides a unique platform to investigate the developmental profile of FXS-associated phenotypes throughout neural precursor and neuron generation, at a temporal resolution not afforded by post-mortem tissue and in a patient-specific context not represented in rodent models.
View Article and Find Full Text PDFWith the increase in aging populations around the world, the development of human cell models to study neurodegenerative disease is crucial. A major limitation in using induced pluripotent stem cell (hiPSC) technology to model diseases of aging is that reprogramming fibroblasts to a pluripotent stem cell state erases age-associated features. The resulting cells show behaviors of an embryonic stage exhibiting longer telomeres, reduced oxidative stress, and mitochondrial rejuvenation, as well as epigenetic modifications, loss of abnormal nuclear morphologies, and age-associated features.
View Article and Find Full Text PDFThe development of human cell-based platforms for disease modeling, drug discovery, and regenerative therapy relies on robust and practical methods to derive high yields of relevant neuronal subtypes. Direct reprogramming strategies have sought to provide a means of deriving human neurons that mitigate the low conversion efficiencies, and protracted timing of human embryonic stem cell and induced pluripotent stem cell-derived neuron specification in vitro. However, few studies have demonstrated the direct conversion of adult human fibroblasts into multipotent neural precursors with the capacity to differentiate into cortical neurons with high efficiency.
View Article and Find Full Text PDFUnlabelled: Human papillomavirus 11 (HPV11) is an etiological agent of anogenital warts and laryngeal papillomas and is included in the 4-valent and 9-valent prophylactic HPV vaccines. We established the largest collection of globally circulating HPV11 isolates to date and examined the genomic diversity of 433 isolates and 78 complete genomes (CGs) from six continents. The genomic variation within the 2,800-bp E5a-E5b-L1-upstream regulatory region was initially studied in 181/207 (87.
View Article and Find Full Text PDFUnlabelled: Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.
View Article and Find Full Text PDFRecurrent respiratory papillomatosis (RRP) is a potentially life-threatening disease caused by human papillomavirus (HPV), usually HPV types 6 and 11. The conventional method used for detection and typing the RRP isolates in our laboratory is the polymerase chain reaction (PCR) and DNA sequencing method. A real-time PCR assay based on fluorescence resonance energy transfer (FRET) probe technology was developed for the detection and rapid genotyping of HPV-6 and-11 isolates from biopsy material.
View Article and Find Full Text PDF