Publications by authors named "Catharina Arnold-Schrauf"

Dendritic cells (DCs) represent one of the most important immune cell subsets in preventing the host from pathogen invasion by promoting both innate and adaptive immunity. Most research on human dendritic cells has focused on the easy-to-obtain dendritic cells derived in vitro from monocytes (MoDCs). However, many questions remain unanswered regarding the role of different dendritic cell types.

View Article and Find Full Text PDF

Lysosomal signaling facilitates the migration of immune cells by releasing Ca2+ to activate the actin-based motor myosin II at the cell rear. However, how the actomyosin cytoskeleton physically associates to lysosomes is unknown. We have previously identified myosin II as a direct interactor of Rab7b, a small GTPase that mediates the transport from late endosomes/lysosomes to the trans-Golgi network (TGN).

View Article and Find Full Text PDF

Background: Pancreatic cancer (PC) ranks among the deadliest malignancies worldwide. In the MPACT study, first-line nab-paclitaxel plus gemcitabine (nab-P/G) demonstrated activity (median overall survival [OS], 8.7 months) and tolerability in patients with metastatic PC (mPC).

View Article and Find Full Text PDF

The ability to generate large numbers of distinct types of human dendritic cells (DCs) in vitro is critical for accelerating our understanding of DC biology and harnessing them clinically. We developed a DC differentiation method from human CD34 precursors leading to high yields of plasmacytoid DCs (pDCs) and both types of conventional DCs (cDC1s and cDC2s). The identity of the cells generated in vitro and their strong homology to their blood counterparts were demonstrated by phenotypic, functional, and single-cell RNA-sequencing analyses.

View Article and Find Full Text PDF

T cell subsets including effector (T), regulatory (T), and memory (T) cells are characterized by distinct metabolic profiles that influence their differentiation and function. Previous research suggests that engagement of long-chain fatty acid oxidation (LC-FAO) supports Foxp3 T cell and T cell survival. However, evidence for this is mostly based on inhibition of Cpt1a, the rate-limiting enzyme for LC-FAO, with the drug etomoxir.

View Article and Find Full Text PDF

(), the causative agent of human tuberculosis, is able to efficiently manipulate the host immune system establishing chronic infection, yet the underlying mechanisms of immune evasion are not fully understood. Evidence suggests that this pathogen interferes with host cell lipid metabolism to ensure its persistence. Fatty acid metabolism is regulated by acetyl-CoA carboxylase (ACC) 1 and 2; both isoforms catalyze the conversion of acetyl-CoA into malonyl-CoA, but have distinct roles.

View Article and Find Full Text PDF

Targeting Ags to conventional dendritic cells can enhance Ag-specific immune responses. Although most studies have focused on the induction of T cell responses, the mechanisms by which targeting improves Ab responses are poorly understood. In this study we present data on the use of human XCL1 (hXCL1) and hXCL2 fusion vaccines in a murine model.

View Article and Find Full Text PDF

The cytoplasmic tail of CD45 (ct-CD45) is proteolytically cleaved and released upon activation of human phagocytes. It acts on T cells as an inhibitory, cytokine-like factor in vitro. Here, we show that ct-CD45 is abundant in human peripheral blood plasma from healthy adults compared with plasma derived from umbilical cord blood and plasma from patients with rheumatoid arthritis or systemic lupus erythematosus.

View Article and Find Full Text PDF

Dendritic cells (DCs) are key regulators of both innate and adaptive immunity. During infection, DCs recognise pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs) including the Toll-like receptor (TLR) family. TLRs mainly signal via the adaptor protein MyD88.

View Article and Find Full Text PDF

Multiple subsets of FMS-like tyrosine kinase 3 ligand (FLT3L)-dependent dendritic cells (DCs) control T-cell tolerance and immunity. In mice, Batf3-dependent CD103(+) DCs efficiently enter lymph nodes and cross-present antigens, rendering this conserved DC subset a promising target for tolerance induction or vaccination. However, only limited numbers of CD103(+) DCs can be isolated with current methods.

View Article and Find Full Text PDF

Listeria monocytogenes (LM), a facultative intracellular Gram-positive pathogen, can cause life-threatening infections in humans. In mice, the signaling cascade downstream of the myeloid differentiation factor 88 (MyD88) is essential for proper innate immune activation against LM, as MyD88-deficient mice succumb early to infection. Here, we show that MyD88 signaling in dendritic cells (DCs) is sufficient to mediate the protective innate response, including the production of proinflammatory cytokines, neutrophil infiltration, bacterial clearance, and full protection from lethal infection.

View Article and Find Full Text PDF

Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis that is responsible for almost 1.5 million deaths per year. Sensing of mycobacteria by the host's immune system relies on different families of receptors present on innate immune cells.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) express the I-type lectin receptor Siglec-H and produce interferon α (IFNα), a critical anti-viral cytokine during the acute phase of murine cytomegalovirus (MCMV) infection. The ligands and biological functions of Siglec-H still remain incompletely defined in vivo. Thus, we generated a novel bacterial artificial chromosome (BAC)-transgenic "pDCre" mouse which expresses Cre recombinase under the control of the Siglec-H promoter.

View Article and Find Full Text PDF

Vaccination is one of the oldest yet still most effective methods to prevent infectious diseases. However, eradication of intracellular pathogens and treatment of certain diseases like cancer requiring efficient cytotoxic immune responses remain a medical challenge. In mice, a successful approach to induce strong cytotoxic CD8⁺ T-cell (CTL) reactions is to target antigens to DCs using specific antibodies against surface receptors in combination with adjuvants.

View Article and Find Full Text PDF

Although regulatory T cells (T(regs)) are known to suppress self-reactive autoimmune responses, their role during T cell responses to nonself antigens is not well understood. We show that T(regs) play a critical role during the priming of immune responses in mice. T(reg) depletion induced the activation and expansion of a population of low-avidity CD8(+) T cells because of overproduction of CCL-3/4/5 chemokines, which stabilized the interactions between antigen-presenting dendritic cells and low-avidity T cells.

View Article and Find Full Text PDF