The interaction of carbohydrates with a variety of biological targets, including antibodies, proteins, viruses, and cells are of utmost importance in many aspects of biology. Glycan microarrays are increasingly used to determine the binding specificity of glycan-binding proteins. In this study, a novel microarray support is reported for the fabrication of glycan arrays that combines the higher sensitivity of a layered Si-SiO surface with a novel polymeric coating easily modifiable by subsequent click reaction.
View Article and Find Full Text PDFA new methodology for the fabrication of an high-performance peptide microarray is reported, combining the higher sensitivity of a layered Si-SiO2 substrate with the oriented immobilization of peptides using a N,N-dimethylacrylamide-based polymeric coating that contains alkyne monomers as functional groups. This clickable polymer allows the oriented attachment of azido-modified peptides via a copper-mediated azide/alkyne cycloaddition. A similar coating that does not contain the alkyne functionality has been used as comparison, to demonstrate the importance of a proper orientation for facilitating the probe recognition and interaction with the target antibody.
View Article and Find Full Text PDFA number of materials used to fabricate disposable microfluidic devices are hydrophobic in nature with water contact angles on their surface ranging from 80° to over 100°. This characteristic makes them unsuitable for a number of microfluidic applications. Both the wettability and analyte adsorption parameters are highly dependent on the surface hydrophobicity.
View Article and Find Full Text PDFThe recent technological advances in micro/nanotechnology present new opportunities to combine microfluidics with microarray technology for the development of small, sensitive, single-use, point-of-care molecular diagnostic devices. As such, the integration of microarray and plastic microfluidic systems is an attractive low-cost alternative to glass based microarray systems. This paper presents the integration of a DNA microarray and an all-polymer microfluidic foil system with integrated thin film heaters, which demonstrate DNA analysis based on melting curve analysis (MCA).
View Article and Find Full Text PDF