Publications by authors named "Caterina Summonte"

Article Synopsis
  • In this study, researchers highlight the importance of accurately measuring the relative dielectric constant of organic semiconductor films instead of assuming standard values.
  • Two techniques, Spectroscopy Ellipsometry and Scanning Capacitance Microscopy, were used to analyze the dielectric behavior of ultrathin films made of a specific organic compound.
  • The findings reveal that the dielectric constant varies with film thickness—starting at 2.1 for a single layer and reaching a maximum of 3.2 between the third and fourth layer—indicating a change in growth mode and molecular structure as the film thickens.
View Article and Find Full Text PDF

The physico-chemical properties of native oxide layers, spontaneously forming on crystalline Si wafers in air, can be strictly correlated to the dopant type and doping level. In particular, our investigations focused on oxide layers formed upon air exposure in a clean room after Si wafer production, with dopant concentration levels from ≈10 to ≈10 cm. In order to determine these correlations, we studied the surface, the oxide bulk, and its interface with Si.

View Article and Find Full Text PDF

In this work, we investigate a vertically illuminated near-infrared photodetector based on a graphene layer physically embedded between a crystalline and a hydrogenated silicon layer. Under near-infrared illumination, our devices show an unforeseen increase in the thermionic current. This effect has been ascribed to the lowering of the graphene/crystalline silicon Schottky barrier as the result of an upward shift in the graphene Fermi level induced by the charge carriers released from traps localized at the graphene/amorphous silicon interface under illumination.

View Article and Find Full Text PDF

In this study, the structure and morphology, as well as time, ultraviolet radiation, and humidity stability of thin films based on newly developed 1D (PRSH)PbX (X = Br, I) pseudo-perovskite materials, containing 1D chains of face-sharing haloplumbate octahedra, are investigated. All films are strongly crystalline already at room temperature, and annealing does not promote further crystallization or film reorganization. The film microstructure is found to be strongly influenced by the anion type and, to a lesser extent, by the DMF/DMSO solvent volume ratio used during film deposition by spin-coating.

View Article and Find Full Text PDF

Efforts to realize thin-film solar cells on unconventional substrates face several obstacles in achieving good energy-conversion efficiency and integrating light-management into the solar cell design. In this report a technique to circumvent these obstacles is presented: transferability and an efficient light-harvesting scheme are combined for thin-film silicon solar cells by the incorporation of a NaCl layer. Amorphous silicon solar cells in p-i-n configuration are fabricated on reusable glass substrates coated with an interlayer of NaCl.

View Article and Find Full Text PDF

A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering.

View Article and Find Full Text PDF

Hydrogenated amorphous silicon (a-Si:H) has been already considered for the objective of passive optical elements, like waveguides and ring resonators, within photonic integrated circuits at λ = 1.55 μm. However the study of its electro-optical properties is still at an early stage, therefore this semiconductor in practice is not considered for light modulation as yet.

View Article and Find Full Text PDF

Detection of glucose in water solution for several different concentrations has been performed with the purpose to determine the sensitivity of Near Infrared Bloch Surface Waves (lambda = 1.55microm) upon refractive index variations of the outer medium. TE-polarized electromagnetic surface waves are excited by a prism on a silicon nitride multilayer, according to the Kretschmann configuration.

View Article and Find Full Text PDF

Electro optical absorption in hydrogenated amorphous silicon (proportional-Si:H)--morphous silicon carbonitride (proportional-SiCxNy) multilayers have been studied in two different planar multistacks waveguides. The waveguides were realized by plasma enhanced chemical vapour deposition (PECVD), a technology compatible with the standard microelectronic processes. Light absorption is induced at lambda = 1.

View Article and Find Full Text PDF