Pompe disease is a metabolic myopathy due to acid alpha-glucosidase deficiency. In addition to glycogen storage, secondary dysregulation of cellular functions, such as autophagy and oxidative stress, contributes to the disease pathophysiology. We have tested whether oxidative stress impacts on enzyme replacement therapy with recombinant human alpha-glucosidase (rhGAA), currently the standard of care for Pompe disease patients, and whether correction of oxidative stress may be beneficial for rhGAA therapy.
View Article and Find Full Text PDFPompe disease is an inherited metabolic disorder due to the deficiency of the lysosomal acid -glucosidase (GAA). The only approved treatment is enzyme replacement therapy with the recombinant enzyme (rhGAA). Further approaches like pharmacological chaperone therapy, based on the stabilising effect induced by small molecules on the target enzyme, could be a promising strategy.
View Article and Find Full Text PDFThe highly stereocontrolled de novo synthesis of l-NBDNJ (the unnatural enantiomer of the iminosugar drug Miglustat) and a preliminary evaluation of its chaperoning potential are herein reported. l-NBDNJ is able to enhance lysosomal α-glucosidase levels in Pompe disease fibroblasts, either when administered singularly or when coincubated with the recombinant human α-glucosidase. In addition, differently from its d-enantiomer, l-NBDNJ does not act as a glycosidase inhibitor.
View Article and Find Full Text PDFEnzyme replacement therapy is currently the only approved treatment for Pompe disease, due to acid α-glucosidase deficiency. Clinical efficacy of this approach is variable, and more effective therapies are needed. We showed in preclinical studies that chaperones stabilize the recombinant enzyme used for enzyme replacement therapy.
View Article and Find Full Text PDFPompe disease (PD) is a metabolic myopathy due to the deficiency of the lysosomal enzyme α-glucosidase (GAA). The only approved treatment for this disorder, enzyme replacement with recombinant human GAA (rhGAA), has shown limited therapeutic efficacy in some PD patients. Pharmacological chaperone therapy (PCT), either alone or in combination with enzyme replacement, has been proposed as an alternative therapeutic strategy.
View Article and Find Full Text PDFAnderson-Fabry disease is an X-linked lysosomal storage disorder resulting from the deficiency of the hydrolytic enzyme alpha galactosidase A, with consequent accumulation of globotrioasoyl ceramide in cells and tissues of the body, resulting in a multi-system pathology including end organ failure. In the classical phenotype, cardiac failure, renal failure and stroke result in a reduced median life expectancy. The current causal treatment for Fabry disease is the enzyme replacement therapy (ERT): two different products, Replagal (agalsidase alfa) and Fabrazyme (agalsidase beta), have been commercially available in Europe for almost 10 years and they are both indicated for long-term treatment.
View Article and Find Full Text PDFFabry disease is an X-linked lysosomal disease caused by mutations of the alpha-galactosidase A (GLA) gene at chromosome subband Xq22.1. To date, more than 600 genetic mutations have been identified to determine the nature and frequency of the molecular lesions causing the classical and milder variant phenotypes and for precise carrier detection.
View Article and Find Full Text PDFFabry disease (FD) is an X-linked inherited disease due to alpha-galactosidase A (alpha-Gal A) deficiency and characterized by lysosomal storage of globotriaosylceramide (Gb3) and related neutral glycosphingolipids. Storage of these substrates results in multisystem manifestations, including renal failure, cardiomyopathy, premature myocardial infarctions, stroke, chronic neuronopathic pain, gastrointestinal disturbances, and skin angiokeratoma. Enzyme replacement therapy (ERT) with recombinant human alpha-galactosidase A (rh-alpha-Gal A) is now available for the treatment of FD and in most patients results in clinical improvement or stabilization.
View Article and Find Full Text PDFPompe disease is a lysosomal storage disorder (LSD) caused by mutations in the gene that encodes acid alpha-glucosidase (GAA). Recently, small molecule pharmacological chaperones have been shown to increase protein stability and cellular levels for mutant lysosomal enzymes and have emerged as a new therapeutic strategy for the treatment of LSDs. In this study, we characterized the pharmacological chaperone 1-deoxynojirimycin (DNJ) on 76 different mutant forms of GAA identified in Pompe disease.
View Article and Find Full Text PDFIn spite of the progress in the treatment of lysosomal storage diseases (LSDs), in some of these disorders the available therapies show limited efficacy and a need exists to identify novel therapeutic strategies. We studied the combination of enzyme replacement and enzyme enhancement by pharmacological chaperones in Pompe disease (PD), a metabolic myopathy caused by the deficiency of the lysosomal acid alpha-glucosidase. We showed that coincubation of Pompe fibroblasts with recombinant human alpha-glucosidase and the chaperone N-butyldeoxynojirimycin (NB-DNJ) resulted in more efficient correction of enzyme activity.
View Article and Find Full Text PDFBackground: Pompe disease (PD) is a metabolic myopathy caused by alpha-glucosidase (GAA) deficiency and characterized by generalized glycogen storage. Heterogeneous GAA gene mutations result in wide phenotypic variability, ranging from the severe classic infantile presentation to the milder intermediate and late-onset forms. Enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA), the only treatment available for PD, intriguingly shows variable efficacy in different PD patients.
View Article and Find Full Text PDFWe investigated the use of pharmacological chaperones for the therapy of Pompe disease, a metabolic myopathy due to mutations of the gene encoding the lysosomal hydrolase α-glucosidase (GAA) and characterized by generalized glycogen storage in cardiac and skeletal muscle. We studied the effects of two imino sugars, deoxynojirimycin (DNJ) and N-butyldeoxynojirimycin (NB-DNJ), on residual GAA activity in fibroblasts from eight patients with different forms of Pompe disease (two classic infantile, two non-classic infantile onset, four late-onset forms), and with different mutations of the GAA gene. We demonstrated a significant increase of GAA activity (1.
View Article and Find Full Text PDFWe investigated the use of pharmacological chaperones for the therapy of Pompe disease, a metabolic myopathy due to mutations of the gene encoding the lysosomal hydrolase alpha-glucosidase (GAA) and characterized by generalized glycogen storage in cardiac and skeletal muscle. We studied the effects of two imino sugars, deoxynojirimycin (DNJ) and N-butyldeoxynojirimycin (NB-DNJ), on residual GAA activity in fibroblasts from eight patients with different forms of Pompe disease (two classic infantile, two non-classic infantile onset, four late-onset forms), and with different mutations of the GAA gene. We demonstrated a significant increase of GAA activity (1.
View Article and Find Full Text PDF