The pyridoxal 5'-dependent enzyme methionine γ-lyase (MGL) catalyzes the degradation of methionine. This activity has been profitable to develop an antitumor agent exploiting the strict dependence of most malignant cells on the availability of methionine. Indeed, methionine depletion blocks tumor proliferation and leads to an increased susceptibility to anticancer drugs.
View Article and Find Full Text PDFThe delivery of drugs through the skin barrier at a predetermined rate is the aim of transdermal drug delivery systems (TDDSs). However, so far, TDDS has not fully attained its potential as an alternative to hypodermic injections and oral delivery. In this study, we presented a proof of concept of a dual drug-loaded patch made of nanoparticles (NPs) and ultrafine fibers fabricated by using one equipment, i.
View Article and Find Full Text PDFThe widely expressed G protein-coupled apelin receptor (APJ) is activated by two bioactive endogenous peptides, apelin and ELABELA (ELA). The apelin/ELA-APJ-related pathway has been found involved in the regulation of many physiological and pathological cardiovascular processes. Increasing studies are deepening the role of the APJ pathway in limiting hypertension and myocardial ischaemia, thus reducing cardiac fibrosis and adverse tissue remodelling, outlining APJ regulation as a potential therapeutic target for heart failure prevention.
View Article and Find Full Text PDFType-1 diabetes is one of the most prevalent metabolic disorders worldwide. It results in a significant lack of insulin production by the pancreas and the ensuing hyperglycemia, which needs to be regulated through a tailored administration of insulin throughout the day. Recent studies have shown great advancements in developing an implantable artificial pancreas.
View Article and Find Full Text PDFTo improve the capability of non-woven polypropylene-based fabric (NWF-PP) used for face mask production to retain active biomolecules such as polyphenols, the surface functionalization of NWF-PP-directly cut from face masks-was carried out by employing cold plasma with oxygen. The nature/structure of the functional groups, as well as the degree of functionalization, were evaluated by ATR-FTIR and XPS by varying the experimental conditions (generator power, treatment time, and oxygen flow). The effects of plasma activation on mechanical and morphological characteristics were evaluated by stress-strain measurements and SEM analysis.
View Article and Find Full Text PDFStudies have shown a link between the downregulation of connexin 43 (Cx43), the predominant isoform in cardiac gap junctions, and high susceptibility to cardiac arrhythmias and cardiomyocyte death. Non-myocytic cells (NMCs), the most abundant component of the heart, exert multiple cardiac functions and represent an important therapeutic target for diseased cardiac tissue. A few studies have investigated the effect of Apelin-13, an endogenous peptide with a key role in various cardiovascular functions, on Cx43 expression in cardiomyocytes.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are a family of biopolyesters synthesized by various microorganisms. Due to their biocompatibility and biodegradation, PHAs have been proposed for biomedical applications, including tissue engineering scaffolds. Olive leaf extract (OLE) can be obtained from agri-food biowaste and is a source of polyphenols with remarkable antioxidant properties.
View Article and Find Full Text PDFThe recent advances in nanotechnology are revolutionizing preventive and therapeutic approaches to treating cardiovascular diseases. Controlling the extracellular matrix metalloproteinase (MMP) activation and expression in the failing human left ventricular myocardium represents a significant therapeutic target for heart disease. In this study, we used molecularly imprinting polymers (MIPs) to restore the correct balance between MMPs and their tissue inhibitors (TIMPs), and explored the potential of this technique exhaustively through chemical synthesis, physicochemical and biological characterizations, and computational chemistry methods.
View Article and Find Full Text PDFMyocardial infarction (MI) is one of the leading causes of heart-related deaths worldwide. Following MI, the hypoxic microenvironment triggers apoptosis, disrupts the extracellular matrix and forms a non-functional scar that leads towards adverse left ventricular (LV) remodelling. If left untreated this eventually leads to heart failure.
View Article and Find Full Text PDFChemotherapeutics represent the standard treatment for a wide range of cancers. However, these agents also affect healthy cells, thus leading to severe off-target effects. Given the non-selectivity of the commonly used drugs, any increase in the selective tumor tissue uptake would represent a significant improvement in cancer therapy.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2020
To deliver on the promise of cardiac regeneration, an integration process between an emerging field, nanomedicine, and a more consolidated one, tissue engineering, has begun. Our work aims at summarizing some of the most relevant prevailing cases of nanotechnological approaches applied to tissue engineering with a specific interest in cardiac regenerative medicine, as well as delineating some of the most compelling forthcoming orientations. Specifically, this review starts with a brief statement on the relevant clinical need, and then debates how nanotechnology can be combined with tissue engineering in the scope of mimicking a complex tissue like the myocardium and its natural extracellular matrix (ECM).
View Article and Find Full Text PDFSensorineural hearing loss (SNHL) affects the inner ear compartment and can be caused by different factors. Usually, the lack, death, or malfunction of sensory cells deputed to transduction of mechanic-into-electric signals leads to SNHL. To date, the therapeutic option for patients impaired by severe or profound SNHL is the cochlear implant (CI), a high-tech electronic device replacing the entire cochlear function.
View Article and Find Full Text PDFThe objective of this study was the preparation and physico-chemical, mechanical, biological, and functional characterization of a multifunctional coating for an innovative, fully implantable device. The multifunctional coating was designed to have three fundamental properties: adhesion to device, close mechanical resemblance to human soft tissues, and control of the inflammatory response and tissue repair process. This aim was fulfilled by preparing a multilayered coating based on three components: a hydrophilic primer to allow device adhesion, a poly(vinyl alcohol) hydrogel layer to provide good mechanical compliance with the human tissue, and a layer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers.
View Article and Find Full Text PDFThe protection from ischaemia-reperfusion-associated myocardial infarction worsening remains a big challenge. We produced a bioartificial 3D cardiac patch with cardioinductive properties on stem cells. Its multilayer structure was functionalised with clinically relevant doses of adenosine.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2019
Cystic fibrosis (CF) is a progressive genetic disease caused by mutations in the gene that produces the CF transmembrane conductance regulator (CFTR) protein. The malfunction of the CFTR protein causes a thick buildup of mucus in the lungs that clogs the airways and traps bacteria, thus leading to infections, extensive lung damage and respiratory failure. Micro-delivery systems are currently being investigated as an efficient way to cross the viscous and complex architecture of the CF mucus.
View Article and Find Full Text PDFThe use of nanomaterials in medicine has grown very rapidly, leading to a concern about possible health risks. Surely, the application of nanotechnology in medicine has many significant potentialities as it can improve human health in at least three different ways: by contributing to early disease diagnosis, improved treatment outcomes and containment of health care costs. However, toxicology or safety assessment is an integral part of any new medical technology and the nanotechnologies are no exception.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2017
A large number of pathologies require the resection of the bowel and anastomoses to rejoin the two remaining stumps to regain lumen patency. Various materials have been used to rejoin one bowel end to the other such as catgut, stainless steel, and absorbable sutures. The present method for anastomosis surgery uses an entero-entero anastomosis (EEA) circular stapler with only a staple line.
View Article and Find Full Text PDFThe biomaterial scaffold plays a key role in most tissue engineering strategies. Its surface properties, micropatterning, degradation, and mechanical features affect not only the generation of the tissue construct in vitro, but also its in vivo functionality. The area of myocardial tissue engineering still faces significant difficulties and challenges in the design of bioactive scaffolds, which allow composition variation to accommodate divergence in the evolving myocardial structure.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
May 2016
Background: The accumulation of amyloid beta protein in the brain causes the cognitive impairment observed in neurodegenerative pathologies such as Alzheimer's disease. The present study aimed to test the hypothesis that a rapid removal of amyloid beta protein peptides from the blood by an extracorporeal purification system could represent an alternative solution for the treatment of patients suffering from this neurodegenerative disease.
Methods: In this regard, we investigated the specific recognition properties of a molecularly imprinted membrane based on poly(ethylene-co-vinyl alcohol) toward the amyloid beta protein fragment 25-35 (AbP), the more neurotoxic domain of amyloid beta protein.
J Appl Biomater Funct Mater
December 2015
Purpose: Nano-drug delivery systems based on polymeric biomaterials have received considerable interest as drug delivery vehicles. In this work, radical polymerization was carried out in order to obtain nanoparticles based on a new acrylate terpolymer (PBMA-(PEG)MEMA-PDMAEMA).
Methods: Nanoparticles were developed in the form both of nanospheres and nanocapsules, an innovative kind of hollow nanoparticles with a great potential because of their low effective density and high specific surface area.
The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization.
View Article and Find Full Text PDFDespite the enormous progress in the treatment of coronary artery diseases, they remain the most common cause of heart failure in the Western countries. New translational therapeutic approaches explore cardiomyogenic differentiation of various types of stem cells in combination with tissue-engineered scaffolds. In this study we fabricated PHBHV/gelatin constructs mimicking myocardial structural properties.
View Article and Find Full Text PDFThis study covers the preparation of microspheres for the controlled and targeted release of paclitaxel, using novel degradable polymers as carrier materials. Paclitaxel-loaded microspheres were prepared by oil-in-water single-emulsion solvent extraction/evaporation technique by using a series of polyurethanes and a block copolymer; the physicochemical properties of these polymers were modulated by changing nature and composition of their structural units. The obtained microparticles showed a regular morphology and properties (diameter: 1-100 µm; resuspension index: 18.
View Article and Find Full Text PDFOver the past decade, a large number of strategies and technologies have been developed to reduce heart failure progression. Among these, cardiac tissue engineering is one of the most promising. Aim of this study is to develop a 3D scaffold to treat cardiac failure.
View Article and Find Full Text PDFThe aim of this work was the morphological, physicochemical, mechanical and biological characterization of a new composite system, based on gelatin, gellan and hydroxyapatite, and mimicking the composition of natural bone. Porous scaffolds were prepared by freeze-drying technique, under three different conditions of freezing. The morphological analysis showed a homogeneous porosity, with well interconnected pores, for the sample which underwent a more rapid freezing.
View Article and Find Full Text PDF