In 2019, the novel SARS-CoV-2 coronavirus emerged in China, causing the pneumonia named COVID-19. At the beginning, all research efforts were focused on the spike (S) glycoprotein. However, it became evident that the nucleocapsid (N) protein is pivotal in viral replication, genome packaging and evasion of the immune system, is highly immunogenic, which makes it another compelling target for antibody development alongside the spike protein.
View Article and Find Full Text PDFIt is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects.
View Article and Find Full Text PDFBackground: Lysine demethylase enzymes (KDMs) are an emerging class of therapeutic targets, that catalyse the removal of methyl marks from histone lysine residues regulating chromatin structure and gene expression. KDM4A isoform plays an important role in the epigenetic dysregulation in various cancers and is linked to aggressive disease and poor clinical outcomes. Despite several efforts, the KDM4 family lacks successful specific molecular inhibitors.
View Article and Find Full Text PDFNetworks-based approaches are often used to analyze gene expression data or protein-protein interactions but are not usually applied to study the relationships between different biomarkers. Given the clinical need for more comprehensive and integrative biomarkers that can help to identify personalized therapies, the integration of biomarkers of different natures is an emerging trend in the literature. Network analysis can be used to analyze the relationships between different features of a disease; nodes can be disease-related phenotypes, gene expression, mutational events, protein quantification, imaging-derived features and more.
View Article and Find Full Text PDFis a Gram-negative pathogen of clinical relevance, which can provoke serious urinary and blood infections and pneumonia. This bacterium is a major public health threat due to its resistance to several antibiotic classes. Using a reverse vaccinology approach, 7 potential antigens were identified, of which 4 were present in most of the sequences of Italian carbapenem-resistant clinical isolates.
View Article and Find Full Text PDFSome marine organisms can resist to aqueous tidal environments and adhere tightly on wet surface. This behavior has raised increasing attention for potential applications in medicine, biomaterials, and tissue engineering. In mussels, adhesive forces to the rock are the resultant of proteinic fibrous formations called byssus.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
June 2022
The cblC disease is an inborn disorder of the vitamin B12 (cobalamin, Cbl) metabolism characterized by methylmalonic aciduria and homocystinuria. The clinical consequences of this disease are devastating and, even when early treated with current therapies, the affected children manifest symptoms involving vision, growth, and learning. The illness is caused by mutations in the gene codifying for MMACHC, a 282aa protein that transports and transforms the different Cbl forms.
View Article and Find Full Text PDFThe development of high-resolution molecular printing allows the engineering of analytical platforms enabling applications at the interface between chemistry and biology, in biosensing, electronics, single-cell biology, and point-of-care diagnostics. Their successful implementation stems from the combination of large area printing at resolutions from sub-100 nm up to macroscale, whilst controlling the composition and volume of the ink, and reconfiguring the deposition features in due course. Similar to handwriting pens, the engineering of continuous writing systems tackles the issue of the tedious ink replenishment between different printing steps.
View Article and Find Full Text PDFThe highly infectious disease COVID-19 caused by the SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail.
View Article and Find Full Text PDFAs part of an International consortium aiming at the characterization by NMR of the proteins of the SARS-CoV-2 virus, we have obtained the virtually complete assignment of the backbone atoms of the non-structural protein nsp9. This small (12 kDa) protein is encoded by ORF1a, binds to RNA and seems to be essential for viral RNA synthesis. The crystal structures of the SARS-CoV-2 protein and other homologues suggest that the protein is dimeric as also confirmed by analytical ultracentrifugation and dynamic light scattering.
View Article and Find Full Text PDFA topic that has attracted considerable interest in recent years is the possibility to perform thermodynamic studies of proteins directly in-cell or in complex environments which mimic the cellular interior. Nuclear magnetic resonance (NMR) could be an attractive technique for these studies but its applicability has so far been limited by technical issues. Here, we demonstrate that 2D NMR methods can be successfully applied to measure thermodynamic parameters provided that a suitable choice of the residues used for the calculation is made.
View Article and Find Full Text PDFThe formation of immiscible liquid phases or coacervates is a phenomenon widely observed in biology. Marine organisms, for instance, use liquid-liquid phase separation (LLPS) as the precursor phase to form various fibrillar or crustaceous materials that are essential for surface adhesion. More recently, the importance of LLPS has been realized in the compartmentalization of living cells and in obtaining ordered but dynamic partitions that can be reversed according to necessity.
View Article and Find Full Text PDFDuring their lifecycle, many marine organisms rely on natural adhesives to attach to wet surfaces for movement and self-defense in aqueous tidal environments. Adhesive proteins from mussels are biocompatible and elicit only minimal immune responses in humans. Therefore these proteins have received increased attention for their potential applications in medicine, biomaterials, and biotechnology.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis and frontotemporal lobar degeneration are incurable motor neuron diseases associated with muscle weakness, paralysis and respiratory failure. Accumulation of TAR DNA-binding protein 43 (TDP-43) as toxic cytoplasmic inclusions is one of the hallmarks of these pathologies. TDP-43 is an RNA-binding protein responsible for regulating RNA transcription, splicing, transport and translation.
View Article and Find Full Text PDFGlobal changes in bacterial gene expression can be orchestrated by the coordinated activation/deactivation of alternative sigma (σ) factor subunits of RNA polymerase. Sigma factors themselves are regulated in myriad ways, including via anti-sigma factors. Here, we have determined the solution structure of anti-sigma factor CsfB, responsible for inhibition of two alternative sigma factors, σ and σ, during spore formation by Bacillus subtilis.
View Article and Find Full Text PDFCongenital amegakaryocytic thrombocytopenia (CAMT) is an inherited disorder characterized at birth by thrombocytopenia with reduced megakaryocytes, which evolves into generalized bone marrow aplasia during childhood. Although CAMT is genetically heterogeneous, mutations of , the gene encoding for the receptor of thrombopoietin (THPO), are the only known disease-causing alterations. We identified a family with three children affected with CAMT caused by a homozygous mutation (p.
View Article and Find Full Text PDFSporulation in Bacillus subtilis is governed by a cascade of alternative RNA polymerase sigma factors. We previously identified a small protein Fin that is produced under the control of the sporulation sigma factor σ to create a negative feedback loop that inhibits σ -directed gene transcription. Cells deleted for fin are defective for spore formation and exhibit increased levels of σ -directed gene transcription.
View Article and Find Full Text PDFMacromolecular crowding ought to stabilize folded forms of proteins, through an excluded volume effect. This explanation has been questioned and observed effects attributed to weak interactions with other cell components. Here we show conclusively that protein stability is affected by volume exclusion and that the effect is more pronounced when the crowder's size is closer to that of the protein under study.
View Article and Find Full Text PDFZ-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP) is a principal component of the sarcomere. The three prevalent isoforms of ZASP in skeletal muscle are generated by alternative splicing of exons 9 and 10. The long isoforms, either having (ZASP-L) or lacking exon 10 (ZASP-LΔex10), include an N-terminal PDZ domain, an actin-binding region (ABR) with a conserved motif (ZM), and three C-terminal LIM domains.
View Article and Find Full Text PDFETV6-related thrombocytopenia is an autosomal dominant thrombocytopenia that has been recently identified in a few families and has been suspected to predispose to hematologic malignancies. To gain further information on this disorder, we searched for ETV6 mutations in the 130 families with inherited thrombocytopenia of unknown origin from our cohort of 274 consecutive pedigrees with familial thrombocytopenia. We identified 20 patients with ETV6-related thrombocytopenia from seven pedigrees.
View Article and Find Full Text PDF