The P2X7 ion channel is a key sensor for extracellular ATP and a key trigger of sterile inflammation. Intravenous injection of nanobodies that block P2X7 has shown to be beneficial in mouse models of systemic inflammation. P2X7 has also emerged as an attractive therapeutic target for inflammatory brain diseases.
View Article and Find Full Text PDFBroadly neutralizing antibodies are an important treatment for individuals with coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Antibody-based therapeutics are also essential for pandemic preparedness against future outbreaks. Camelid-derived single domain antibodies (VHHs) exhibit potent antimicrobial activity and are being developed as SARS-CoV-2–neutralizing antibody-like therapeutics.
View Article and Find Full Text PDFCD38 is overexpressed by multiple myeloma cells and has emerged as a target for therapeutic antibodies. Nanobodies are soluble single domain antibody fragments derived from the VHH variable domain of heavy chain antibodies naturally occurring in camelids. We previously identified distinct llama nanobodies that recognize three non-overlapping epitopes of the extracellular domain of CD38.
View Article and Find Full Text PDFTransthyretin (TTR) has intrinsic neurotrophic physiological activities independent from its thyroxine ligands, which involve activation of signaling pathways through interaction with megalin. Still, the megalin binding motif on TTR is unknown. Nanobodies (Nb) have the ability to bind "hard to reach" epitopes being useful tools for protein/structure function.
View Article and Find Full Text PDFImmune cells express various voltage-gated and ligand-gated ion channels that mediate the influx and efflux of charged ions across the plasma membrane, thereby controlling the membrane potential and mediating intracellular signal transduction pathways. These channels thus present potential targets for experimental modulation of immune responses and for therapeutic interventions in immune disease. Small molecule drugs and natural toxins acting on ion channels have illustrated the potential therapeutic benefit of targeting ion channels on immune cells.
View Article and Find Full Text PDFTransthyretin (TTR) is a transport protein of retinol and thyroxine in serum and CSF, which is mainly secreted by liver and choroid plexus, and in smaller amounts in other cells throughout the body. The exact role of TTR and its specific expression in Central Nervous System (CNS) remains understudied. We investigated TTR expression and metabolism in CNS, through the intranasal and intracerebroventricular delivery of a specific anti-TTR Nanobody to the brain, unveiling Nanobody pharmacokinetics to the CNS.
View Article and Find Full Text PDFThe cell surface ecto-enzyme CD38 is a promising target antigen for the treatment of hematological malignancies, as illustrated by the recent approval of daratumumab for the treatment of multiple myeloma. Our aim was to evaluate the potential of CD38-specific nanobodies as novel diagnostics for hematological malignancies. We successfully identified 22 CD38-specific nanobody families using phage display technology from immunized llamas.
View Article and Find Full Text PDFNext-generation sequencing (NGS) has been applied successfully to the field of therapeutic antibody discovery, often outperforming conventional screening campaigns which tend to identify only the more abundant selective antibody sequences. We used NGS to mine the functional nanobody repertoire from a phage-displayed camelid immune library directed to the recepteur d'origine nantais (RON) receptor kinase. Challenges to this application of NGS include accurate removal of read errors, correct identification of related sequences, and establishing meaningful inclusion criteria for sequences-of-interest.
View Article and Find Full Text PDFIon channels are desirable therapeutic targets, yet ion channel-directed drugs with high selectivity and few side effects are still needed. Unlike small-molecule inhibitors, antibodies are highly selective for target antigens but mostly fail to antagonize ion channel functions. Nanobodies-small, single-domain antibody fragments-may overcome these problems.
View Article and Find Full Text PDFALX-0171 is a trivalent Nanobody derived from monovalent Nb017 that binds to antigenic site II of the human respiratory syncytial virus (hRSV) fusion (F) glycoprotein. ALX-0171 is about 6,000 to 10,000 times more potent than Nb017 in neutralization tests with strains of hRSV antigenic groups A and B. To explore the effect of this enhanced neutralization on escape mutant selection, viruses resistant to either ALX-0171 or Nb017 were isolated after serial passage of the hRSV Long strain in the presence of suboptimal concentrations of the respective Nanobodies.
View Article and Find Full Text PDFPost-exposure prophylaxis (PEP) against rabies infection consists of a combination of passive immunisation with plasma-derived human or equine immune globulins and active immunisation with vaccine delivered shortly after exposure. Since anti-rabies immune globulins are expensive and scarce, there is a need for cheaper alternatives that can be produced more consistently. Previously, we generated potent virus-neutralising VHH, also called Nanobodies, against the rabies glycoprotein that are effectively preventing lethal disease in an in vivo mouse model.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is an important causative agent of lower respiratory tract infections in infants and elderly individuals. Its fusion (F) protein is critical for virus infection. It is targeted by several investigational antivirals and by palivizumab, a humanized monoclonal antibody used prophylactically in infants considered at high risk of severe RSV disease.
View Article and Find Full Text PDFRabies virus causes lethal brain infection in about 61000 people per year. Each year, tens of thousands of people receive anti-rabies prophylaxis with plasma-derived immunoglobulins and vaccine soon after exposure. Anti-rabies immunoglobulins are however expensive and have limited availability.
View Article and Find Full Text PDFThe chemokine receptor CXCR7, belonging to the membrane-bound G protein-coupled receptor superfamily, is expressed in several tumor types. Inhibition of CXCR7 with either small molecules or small interference (si)RNA has shown promising therapeutic benefits in several tumor models. With the increased interest and effectiveness of biologicals inhibiting membrane-bound receptors we made use of the "Nanobody platform" to target CXCR7.
View Article and Find Full Text PDFIn 1989, a new type of antibody was identified, first in the sera of dromedaries and later also in all other species of the Camelidae family. These antibodies do not contain a light chain and also lack the first constant heavy domain. Today it is still unclear what the evolutionary advantage of such heavy chain-only antibodies could be.
View Article and Find Full Text PDFBackground: Lysophosphatidic acid (LPA) is a lipid mediator that acts through specific G protein-coupled receptors to stimulate the proliferation, migration and survival of many cell types. LPA signaling has been implicated in development, wound healing and cancer. While LPA signaling pathways have been studied extensively, it remains unknown how LPA affects global gene expression in its target cells.
View Article and Find Full Text PDFEpidermal growth factor (EGF)-like growth factors bind their ErbB receptors in a highly selective manner, but the molecular basis for this specificity is poorly understood. We have previously shown that certain residues in human EGF (Ser(2)-Asp(3)) and TGFalpha (Glu(26)) are not essential for their binding to ErbB1 but prevent binding to ErbB3 and ErbB4. In the present study, we have used a phage display approach to affinity-optimize the C-terminal linear region of EGF-like growth factors for binding to each ErbB receptor and thereby shown that Arg(45) in EGF impairs binding to both ErbB3 and ErbB4.
View Article and Find Full Text PDFAutotaxin (ATX), or nucleotide pyrophosphatase-phosphodiesterase 2, is a secreted lysophospholipase D that promotes cell migration, metastasis, and angiogenesis. ATX generates lysophosphatidic acid (LPA), a lipid mitogen and motility factor that acts on several G protein-coupled receptors. Here we report that ATX-deficient mice die at embryonic day 9.
View Article and Find Full Text PDFThe family of epidermal growth factor (EGF)-like ligands binds to ErbB receptors in a highly selective manner. Previous studies indicated that both linear regions of the ligand play a major role in determining receptor selectivity, and phage display studies showed that each region could be optimized independently for enhanced affinity. In this study, we broadened the ErbB binding specificity of EGF by introducing the optimal sequence requirements for ErbB3 binding in both the N- and C-terminal linear regions.
View Article and Find Full Text PDFVarious chimeras of the ErbB1-specific ligands epidermal growth factor (EGF) and transforming growth factor-alpha (TGFalpha) display an enlarged repertoire as activators of ErbB2.ErbB3 heterodimers. Mutational analysis indicated that particularly residues in the N terminus and B-loop region of these ligands are involved in the broadened receptor specificity.
View Article and Find Full Text PDFEGF-like growth factors activate their ErbB receptors by promoting receptor-mediated homodimerization or, alternatively, by the formation of heterodimers with the orphan ErbB-2 through an as yet unknown mechanism. To investigate the selectivity in dimer formation by ligands, we have applied the phage display approach to obtain ligands with modified C-terminal residues that discriminate between ErbB-2 and ErbB-3 as dimerization partners. We used the epidermal growth factor/transforming growth factor alpha chimera T1E as the template molecule because it binds to ErbB-3 homodimers with low affinity and to ErbB-2/ErbB-3 heterodimers with high affinity.
View Article and Find Full Text PDFEpidermal growth factor (EGF) binds with high affinity to the EGF receptor, also known as ErbB-1, but upon replacement of the N-terminal linear region by neuregulin (NRG) 1 or transforming growth factor (TGF) alpha sequences it gains in addition high affinity for ErbB-2/ErbB-3 heterodimers. However, these chimeras weakly bind to ErbB-3 alone. To further dissect the ligand binding selectivity of the ErbB network, we have applied the phage display technique to examine the role of the linear N-terminal region in EGF for interaction with ErbB-2/ErbB-3 heterodimers.
View Article and Find Full Text PDFEpidermal growth factor (EGF) and transforming growth factor (TGF)-alpha are potent activators of the ErbB-1 receptor, but, unlike TGF-alpha, EGF is also a weak activator of ErbB-2/ErbB-3 heterodimers. To understand the specificity of EGF-like growth factors for binding to distinct ErbB members, we used EGF/TGF-alpha chimeras to examine the requirements for ErbB-2/ErbB-3 activation. Here we show that in contrast to these two wild-type ligands, distinct EGF/TGF-alpha chimeras are potent activators of ErbB-2/ErbB-3 heterodimers.
View Article and Find Full Text PDF