Objective: Interictal epileptiform discharges (IED) are hallmark biomarkers of epilepsy which are typically detected through visual analysis. Deep learning has shown potential in automating IED detection, which could reduce the burden of visual analysis in clinical practice. This is particularly relevant for ambulatory electroencephalograms (EEGs), as these entail longer review times.
View Article and Find Full Text PDFThe electroencephalogram (EEG) is a fundamental tool in the diagnosis and classification of epilepsy. In particular, Interictal Epileptiform Discharges (IEDs) reflect an increased likelihood of seizures and are routinely assessed by visual analysis of the EEG. Visual assessment is, however, time consuming and prone to subjectivity, leading to a high misdiagnosis rate and motivating the development of automated approaches.
View Article and Find Full Text PDFObjective: Automating detection of Interictal Epileptiform Discharges (IEDs) in electroencephalogram (EEG) recordings can reduce the time spent on visual analysis for the diagnosis of epilepsy. Deep learning has shown potential for this purpose, but the scarceness of expert annotated data creates a bottleneck in the process.
Methods: We used EEGs from 50 patients with focal epilepsy, 49 patients with generalized epilepsy (IEDs were visually labeled by experts) and 67 controls.
Objectives: Visual assessment of the electroencephalogram by experienced clinical neurophysiologists allows reliable outcome prediction of approximately half of all comatose patients after cardiac arrest. Deep neural networks hold promise to achieve similar or even better performance, being more objective and consistent.
Design: Prospective cohort study.