Publications by authors named "Catarina R Almeida"

Tertiary Lymphoid Structures (TLS) are organized aggregates of immune cells such as T cells, B cells, and Dendritic Cells (DCs), as well as fibroblasts, formed postnatally in response to signals from cytokines and chemokines. Central to the function of TLS are DCs, professional antigen-presenting cells (APCs) that coordinate the adaptive immune response, and which can be classified into different subsets, with specific functions, and markers. In this article, we review current data on the contribution of different DC subsets to TLS function in cancer and autoimmunity, two opposite sides of the immune response.

View Article and Find Full Text PDF

Pharmacological targeting of metabolic pathways represents an appealing strategy to selectively kill cancer cells while promoting antitumor functions of stromal cells. In this study, we assessed the effectiveness of 13 metabolic drugs (MDs) in steering generated breast tumor-educated macrophages (TEMs) toward an antitumoral phenotype. For that, the production of vascular endothelial growth factor (VEGF) and tumor necrosis factor α (TNF-α), two important regulators of tumor progression, was evaluated.

View Article and Find Full Text PDF

The immune system is a pivotal player in determining tumor fate, contributing to the immunosuppressive microenvironment that supports tumor progression. Considering the emergence of biomaterials as promising platforms to mimic the tumor microenvironment, human platelet lysate (PLMA)-based hydrogel beads are proposed as 3D platforms to recapitulate the tumor milieu and recreate the synergistic tumor-macrophage communication. Having characterized the biomaterial-mediated pro-regenerative macrophage phenotype, an osteosarcoma spheroid encapsulated into a PLMA hydrogel bead is explored to study macrophage immunomodulation through paracrine signaling.

View Article and Find Full Text PDF

Chronic lung diseases result from alteration and/or destruction of lung tissue, inevitably causing decreased breathing capacity and quality of life for patients. While animal models have paved the way for our understanding of pathobiology and the development of therapeutic strategies for disease management, their translational capacity is limited. There is, therefore, a well-recognised need for innovative models to reflect chronic lung diseases, which will facilitate mechanism investigation and the advancement of new treatment strategies.

View Article and Find Full Text PDF

Endo-lysosomes transport along microtubules and clustering in the perinuclear area are two necessary steps for microbes to activate specialized phagocyte functions. We report that RUN and FYVE domain-containing protein 3 (RUFY3) exists as two alternative isoforms distinguishable by the presence of a C-terminal FYVE domain and by their affinity for phosphatidylinositol 3-phosphate on endosomal membranes. The FYVE domain-bearing isoform (iRUFY3) is preferentially expressed in primary immune cells and up-regulated upon activation by microbes and Interferons.

View Article and Find Full Text PDF

Aging is one of the major etiological factors driving intervertebral disc (IVD) degeneration, the main cause of low back pain. The nucleus pulposus (NP) includes a heterogeneous cell population, which is still poorly characterized. Here, we aimed to uncover main alterations in NP cells with aging.

View Article and Find Full Text PDF

The metabolic crosstalk between tumor cells and tumor-associated macrophages (TAMs) has emerged as a critical contributor to tumor development and progression. In breast cancer (BC), the abundance of immune-suppressive TAMs positively correlates with poor prognosis. However, little is known about how TAMs reprogram their metabolism in the BC microenvironment.

View Article and Find Full Text PDF

Systemic sclerosis (SSc) is a debilitating autoimmune disease that affects multiple systems. It is characterized by immunological deregulation, functional and structural abnormalities of small blood vessels, and fibrosis of the skin, and, in some cases, internal organs. Fibrosis has a devastating impact on a patient's life and lung fibrosis is associated with high morbimortality.

View Article and Find Full Text PDF

Background: Pulmonary Rehabilitation (PR) is one of the most cost-effective therapies for chronic obstructive pulmonary disease (COPD) management. There are, however, people who do not respond to PR and reasons for non-response are mostly unknown. PR is likely to change the airway microbiota and this could play a role in its responsiveness.

View Article and Find Full Text PDF

We report here that RUFY4, a newly characterized member of the 'RUN and FYVE domain-containing' family of proteins previously associated with autophagy enhancement, is highly expressed in alveolar macrophages (AM). We show that RUFY4 interacts with mitochondria upon stimulation by microbial-associated molecular patterns of AM and dendritic cells. RUFY4 interaction with mitochondria and other organelles is dependent on a previously uncharacterized OmpH domain located immediately upstream of its C-terminal FYVE domain.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is a heterogenous assemblage of malignant and non-malignant cells, including infiltrating immune cells and other stromal cells, together with extracellular matrix and a variety of soluble factors. This complex and dynamic milieu strongly affects tumor differentiation, progression, immune evasion, and response to therapy, thus being an important therapeutic target. The phenotypic and functional features of the various cell types present in the TME are largely dependent on their ability to adopt different metabolic programs.

View Article and Find Full Text PDF

During tumorigenesis, breast tumour cells undergo metabolic reprogramming, which generally includes enhanced glycolysis, tricarboxylic acid cycle activity, glutaminolysis and fatty acid biosynthesis. However, the extension and functional importance of these metabolic alterations may diverge not only according to breast cancer subtypes, but also depending on the interaction of cancer cells with the complex surrounding microenvironment. This microenvironment comprises a variety of non-cancerous cells, such as immune cells (e.

View Article and Find Full Text PDF

Human mesenchymal stem cells (MSC) are being explored for cell therapies targeting varied human diseases. For that, cells are being expanded in vitro, many times with fetal bovine serum (FBS) as the main source of growth factors. However, animal-derived components should not be used, to avoid immune rejection from the patient that receives the MSC.

View Article and Find Full Text PDF

Major histocompatibility complex (MHC) molecules present peptide antigens to T lymphocytes and initiate immune responses. The peptides loaded onto MHC class I or MHC class II molecules can be derived from cytosolic proteins, both self and foreign. A variety of cellular processes, including endocytosis, vesicle trafficking, and autophagy, play critical roles in presentation of these antigens.

View Article and Find Full Text PDF

Mucosal T lymphocytes from patients with ulcerative colitis (UC) were previously shown to display a deficiency in branched N-glycosylation associated with disease severity. However, whether this glycosylation pathway shapes the course of the T cell response constituting a targeted-specific mechanism in UC remains largely unknown. In this study, we demonstrated that metabolic supplementation of ex vivo mucosal T cells from patients with active UC with -acetylglucosamine (GlcNAc) resulted in enhancement of branched N-glycosylation in the T cell receptor (TCR), leading to suppression of T cell growth, inhibition of the T helper 1 (Th1)/Th17 immune response, and controlled T cell activity.

View Article and Find Full Text PDF

The biological response to implanted biomaterials is a complex and highly coordinated phenomenon involving many different cell types that interact within 3D microenvironments. Here, we increased the complexity of a 3D platform to include at least 3 cell types that play a role in the host response upon scaffold implantation. With this system, it was possible to address how immune responses triggered by 3D biomaterials mediate recruitment of stromal cells that promote tissue regeneration, mesenchymal stromal/stem cells (MSC), or a foreign body response, fibroblasts.

View Article and Find Full Text PDF

Study Design: Human intervertebral disc (hIVD) cells were isolated from 41 surgically excised samples and assessed for their phenotypic alterations with age.

Objective: Toward the design of novel anti-aging strategies to overcome degenerative disc disease (DDD), we investigated age-correlated phenotypic alterations that occur on primary hIVD cells.

Summary Of Background Data: Although regenerative medicine holds great hope, much is still to be unveiled on IVD cell biology and its intrinsic signaling pathways, which can lead the way to successful therapies for IDD.

View Article and Find Full Text PDF

Cell therapies for intervertebral disc (IVD) regeneration presently rely on transplantation of IVD cells or stem cells directly to the lesion site. Still, the harsh IVD environment, with low irrigation and high mechanical stress, challenges cell administration and survival. In this study, we addressed systemic transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) intravenously into a rat IVD lesion model, exploring tissue regeneration via cell signaling to the lesion site.

View Article and Find Full Text PDF

The hypothesis behind this work is that fibrinogen (Fg), classically considered a pro-inflammatory protein, can promote bone repair/regeneration. Injury and biomaterial implantation naturally lead to an inflammatory response, which should be under control, but not necessarily minimized. Herein, porous scaffolds entirely constituted of Fg (Fg-3D) were implanted in a femoral rat bone defect and investigated at two important time points, addressing the bone regenerative process and the local and systemic immune responses, both crucial to elucidate the mechanisms of tissue remodelling.

View Article and Find Full Text PDF

Despite the importance of immune cell-biomaterial interactions for the regenerative outcome, few studies have investigated how distinct three-dimensional biomaterials modulate the immune cell-mediated mesenchymal stem/stromal cells (MSC) recruitment and function. Thus, this work compares the response of varied primary human immune cell populations triggered by different model scaffolds and describes its functional consequence on recruitment and motility of bone marrow MSC. It was found that polylactic acid (PLA) and chitosan scaffolds lead to an increase in the metabolic activity of macrophages but not of peripheral blood mononuclear cells (PBMC), natural killer (NK) cells or monocytes.

View Article and Find Full Text PDF

Imaging flow cytometry is an emerging imaging technology that combines features of both conventional flow cytometry and fluorescence microscopy allowing quantification of the imaging parameters. The analysis of protein posttranslational modifications by glycosylation using imaging flow cytometry constitutes an important bioimaging tool in the glycobiology field. This technique allows quantification of the glycan fluorescence intensity, co-localization with proteins, and evaluation of the membrane/cytoplasmic expression.

View Article and Find Full Text PDF

Strategies for improved homing of mesenchymal stem cells (MSCs) to a place of injury are being sought and it has been shown that natural killer (NK) cells can stimulate MSC recruitment. Here, we studied the chemokines behind this recruitment. Assays were performed with bone marrow human MSCs and NK cells freshly isolated from healthy donor buffy coats.

View Article and Find Full Text PDF

Mesenchymal Stromal/Stem Cells (MSC) are currently being explored in diverse clinical applications, including regenerative therapies. Their contribution to regeneration of bone fractures is dependent on their capacity to proliferate, undergo osteogenesis and induce angiogenesis. This study aimed to uncover microRNAs capable of concomitantly regulate these mechanisms.

View Article and Find Full Text PDF