Machado-Joseph disease (MJD) or Spinocerebellar ataxia type 3 (SCA3) is the most common form of dominant SCA worldwide. Magnetic Resonance Imaging (MRI) and Proton Magnetic Resonance Spectroscopy (H-MRS) provide promising non-invasive diagnostic and follow-up tools, also serving to evaluate therapies efficacy. However, pre-clinical studies showing relationship between MRI-MRS based biomarkers and functional performance are missing, which hampers an efficient clinical translation of therapeutics.
View Article and Find Full Text PDFThe present study deals with the development of multifunctional biphasic calcium phosphate (BCP) scaffolds coated with biopolymers-poly(ε-caprolactone) (PCL) or poly(ester urea) (PEU)-loaded with an antibiotic drug, Rifampicin (RFP). The amounts of RFP incorporated into the PCL and PEU-coated scaffolds were 0.55 ± 0.
View Article and Find Full Text PDFCytokine Growth Factor Rev
April 2021
The devastating global impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has prompted scientists to develop novel strategies to fight Coronavirus Disease of 2019 (COVID-19), including the examination of pre-existing treatments for other viral infections in COVID-19 patients. This review provides a reasoned discussion of the possible use of Mesenchymal Stromal Cells (MSC) or their products as a treatment in SARS-CoV-2-infected patients. The main benefits and concerns of using this cellular therapy, guided by preclinical and clinical data obtained from similar pathologies will be reviewed.
View Article and Find Full Text PDFPolyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by the expansion of the cytosine-adenine-guanine (CAG) repeat. This mutation encodes extended glutamine (Q) tract in the disease protein, resulting in the alteration of its conformation/physiological role and in the formation of toxic fragments/aggregates of the protein. This group of heterogeneous disorders shares common molecular mechanisms, which opens the possibility to develop a pan therapeutic approach.
View Article and Find Full Text PDFPolyglutamine (polyQ) diseases are a family of neurodegenerative disorders with very heterogeneous clinical presentations, although with common features such as progressive neuronal death. Thus, at the time of diagnosis patients might present an extensive and irreversible neuronal death demanding cell replacement or support provided by cell-based therapies. For this purpose stem cells, which include diverse populations ranging from embryonic stem cells (ESCs), to fetal stem cells, mesenchymal stromal cells (MSCs) or induced pluripotent stem cells (iPSCs) have remarkable potential to promote extensive brain regeneration and recovery in neurodegenerative disorders.
View Article and Find Full Text PDFIn Krabbe's disease (KD), a leukodystrophy caused by β-galactosylceramidase deficiency, demyelination and a myelin-independent axonopathy contributes to the severe neuropathology. Beyond axonopathy, we show that in Twitcher mice, a model of KD, a decreased number of axons both in the PNS and in the CNS, and of neurons in dorsal root ganglia (DRG), occurred before the onset of demyelination. Despite the early axonal loss, and although in vitro Twitcher neurites degenerated over time, Twitcher DRG neurons displayed an initial neurite overgrowth and, following sciatic nerve injury, Twitcher axons were regeneration-competent, at a time point where axonopathy was already ongoing.
View Article and Find Full Text PDFKrabbe's disease (KD) is a demyelinating disorder caused by the deficiency of lysosomal galactocerebrosidase (GALC), affecting both the central (CNS) and the peripheral nervous system (PNS). A current therapy, hematopoietic stem cell transplantation (HSCT), is ineffective at correcting the PNS pathology. We have previously shown that systemic delivery of immortalized bone marrow-derived murine mesenchymal stromal cells (BM-MSCs) diminishes the neuropathology of transplanted Twitcher mice, a murine model of KD.
View Article and Find Full Text PDFLeukodystrophies are a group of disorders characterized by myelin dysfunction, either at the level of myelin formation or maintenance, that affect the central nervous system (CNS) and also in some cases, to a lesser extent, the peripheral nervous system (PNS). Although these genetic-based disorders are generally rare, all together they have a significant impact in the society, with an estimated overall incidence of 1 in 7,663 live births. Currently, there is no cure for leukodystrophies, and the development of effective treatments remains challenging.
View Article and Find Full Text PDFIn Krabbe's disease, a demyelinating disorder, add-on strategies targeting the peripheral nervous system (PNS) are needed, as it is not corrected by bone-marrow (BM) transplantation. To circumvent this limitation of BM transplantation, we assessed whether i.v.
View Article and Find Full Text PDF