In densely populated urban areas, air quality is one of the main concerns, affecting human health and the environment. In developing and emerging countries, an alternative method for reducing the effects of air pollution is to select vehicles with lower pollutant emissions, as a way of making these large centers more sustainable. Since the complete elimination of vehicle emissions is not possible in the short term.
View Article and Find Full Text PDFThis study investigates the thermochemical decomposition and gasification performance of biochars produced from blends of waste lignocellulosic biomass and waste insulation electrical cables at varying temperatures. Characterization tests revealed changes, particularly in ash content (27.5 %-34 %) and elemental composition, with nitrogen content increasing notably in biochar samples compared to the original feedstock.
View Article and Find Full Text PDFIn this study, hydrothermal carbonization (HTC) was used as a thermochemical conversion process to upgrade Refuse Derived Fuel (RDF). The effect of process temperature (250 °C, 275 °C and 300 °C), residence time (30 min and 120 min), and RDF-to-water ratio (1:15 and 1:5) on the main characteristics of the produced hydrochars and process waters was assessed. The HTC process yielded hydrochars with enhanced fuel properties when compared to the original feedstock, namely higher carbon content and heating value.
View Article and Find Full Text PDFRefuse derived fuel containing non-hazardous industrial wastes was subjected to torrefaction and carbonization in an industrial furnace. The RDF samples were heated at 300 °C and 400 °C, for 30 min, yielding solid products (chars) as well as gases and liquids. Proximate and ultimate composition, mineral composition, chlorine content and high heating value were determined for the original sample and the produced chars.
View Article and Find Full Text PDFThe impact of torrefaction and low-temperature carbonization on the properties of biomass wastes from Arundo donax L. and Phoenix canariensis was studied. Thermal treatments were performed at temperatures from 200°C to 350°C during 15 to 90min and temperature was the parameter that more influenced mass and energy yields as well as biochar composition.
View Article and Find Full Text PDF