The foreseen increasing application of copper-based nanomaterials (Cu-NMs), replacing or complementing existing Cu-agrochemicals, may negatively impact the soil microbiome. Thus, we studied the effects on soil microbiome function and composition of nano copper oxide (nCuO) or copper hydroxide NMs in a commercial (Kocide®3000) or a lab-synthetized formulation (nCu(OH)) or bulk copper hydroxide (Cu(OH)-B), at the commonly recommended Cu dose of 50 mg(Cu)kg soil. Microbial responses were studied over 28 days in a designed indoor mesocosm.
View Article and Find Full Text PDFThe interplay between metal contamination and climate change may exacerbate the negative impact on the soil microbiome and, consequently, on soil health and ecosystem services. We assessed the response of the microbial community of a heavy metal-contaminated soil when exposed to short-term (48 h) variations in air temperature, soil humidity or ultraviolet (UV) radiation in the absence and presence of (soil invertebrate). Each of the climate scenarios simulated significantly altered at least one of the microbial parameters measured.
View Article and Find Full Text PDFClimate changes and metal contamination are pervasive stressors for soil ecosystems. Mercury (Hg), one of the most toxic metals, has been reported to interact with temperature. However, compared to aquatic biota, little is known about how temperature affects Hg toxicity and bioaccumulation to soil organisms.
View Article and Find Full Text PDFWe analyzed the effects on a soil microbial community of short-term alterations in air temperature, soil moisture and ultraviolet radiation and assessed the role of invertebrates (species ) in modulating the community's response to these factors. The reference soil, Lufa 2.2, was incubated for 48 h, with and without invertebrates, under the following conditions: standard (20 °C + 50% water holding capacity (WHC)); increased air temperature (15-25 °C or 20-30 °C + 50% WHC); flood (20 °C + 75% WHC); drought (20 °C + 25% WHC); and ultraviolet radiation (UV) (20 °C + 50% WHC + UV).
View Article and Find Full Text PDFGlobal warming is drastically altering the climate conditions of our planet. Soils will be among the most affected components of terrestrial ecosystems, especially in contaminated areas. In this study we investigated if changes in climate conditions (air temperature and soil moisture) affect the toxicity of historically metal(loid)-contaminated soils to the invertebrate Folsomia candida, followed by an assessment of its recovery capacity.
View Article and Find Full Text PDFBackground: Non-value agrifood byproducts are rich in biomolecules such as proteins and polysaccharides, and possess film-forming ability, motivating their use in the development of biodegradable plastics. This work studied the feasibility of using locust bean milling-derived dust (LBMD) as a source of biomolecules suitable for developing biodegradable plastics.
Results: LBMD is composed of 56% protein, 28% carbohydrate, 10% moisture, 6% lipid, and 2% ash.
Soil contamination is a worldwide problem urging for mitigation. Biochar is a carbonaceous material used as soil amendment that can immobilize chemical compounds, potentially turning them unavailable for soil biota. The aim of our study was to evaluate biochar's capacity to immobilize dimethoate in soil and, therefore, decreasing the toxicity to soil organisms.
View Article and Find Full Text PDFGlobal climate changes are predicted for the 21st century. Alterations in soil contaminants' availability and soil invertebrates' behavior are expected, which may interfere with the avoidance capacity that invertebrates may have towards contaminated soils and, therefore, compromise their role in soil functioning. This study aimed to assess the individual effects of air temperature, ultraviolet (UV) radiation and atmospheric CO concentration on the avoidance behavior of the arthropod Folsomia candida and the soft-bodied oligochaete Enchytraeus crypticus towards metal(loid)-contaminated soils.
View Article and Find Full Text PDFWater availability is paramount in the response of soil invertebrates towards stress situations. This study aimed to evaluate the effects of forecasted soil moisture scenarios on the avoidance behavior of two invertebrate species (the arthropod Folsomia candida and the soft-bodied oligochaete Enchytraeus crypticus) in soils degraded by different types of anthropogenic metal(loid) contamination (mining soil and agricultural soil affected by industrial chemical wastes). Different soil moisture contents (expressed as % of the soil water holding capacity, WHC) were evaluated: 50% (standard soil moisture conditions for soil invertebrates' tests); 75% (to simulate increasing soil water availability after intense rainfalls and/or floods); 40%, 30%, 25% and 20% (to simulate decreasing soil water availability during droughts).
View Article and Find Full Text PDFThe present study shows the comet assay technique being successfully applied for the first time to one of the most widely used soil organisms in standardized ecotoxicological tests, Folsomia candida, providing a step forward in assessing the genotoxicity induced by xenobiotics. Because collembolans have a high content of chitin, a new methodology was developed in which the heads of the collembolans were separated from the rest of the body, allowing the hemolymph to leak out. This procedure allows the cells to be released, and after lysis the genetic material is available for the comet assay.
View Article and Find Full Text PDFA new sol-gel application for the development of SPME fibers is described. Phenyltrimethoxysilane (PTMOS) and methyltrimethoxysilane (MTMOS) were the sol-gel precursors used at different proportions, together with different water contents, catalyst and reaction time. It was observed that obtaining a good film quality was determinant for a good extracting fiber performance.
View Article and Find Full Text PDF