Publications by authors named "Catarina M Alves"

Background: Tuberculosis (TB) infection screening of high-risk groups is an important strategy for achieving End TB targets. A TB infection screening program was implemented for quarry workers from a Portuguese high-incidence area in 2018-2022. We aimed to calculate the cost-benefit of the screening program from the societal perspective.

View Article and Find Full Text PDF

Evaluating the functional structure of benthic macrofaunal communities provides insights into how environmental drivers shape the ecosystem and establishes a baseline knowledge of the communities' dynamics and functioning. This understanding allows the prediction of responses to environmental changes and the implementation of efficient conservation and management strategies. Here we examine the structures and functions of benthic macrofaunal communities on the Northwest Iberian coast concerning environmental factors such as depth, hydrodynamic energy, and bottom type.

View Article and Find Full Text PDF

The northern region of Portugal has the largest number of companies manufacturing granite and stone products, which has become the region's trademark. In the municipalities of Marco de Canaveses and Penafiel, the economic activity of this area is important. However, the lack of attractiveness of this activity, combined with the high prevalence of silicosis and tuberculosis in this population, has led to a growing shortage of labor.

View Article and Find Full Text PDF

Flavodiiron proteins (FDPs) are a family of enzymes with a significant role in O /H O and/or NO detoxification through the reduction of these species to H O or N O, respectively. All FDPs contain a minimal catalytic unit of two identical subunits, each one having a metallo-β-lactamase-like domain harboring the catalytic diiron site, and a flavodoxin-like domain. However, more complex and diverse arrangements in terms of domains are found in this family, of which the class H enzymes are among the most complex.

View Article and Find Full Text PDF

Plants and derivatives have been explored for unlimited purposes by mankind, from crop cultivation for providing food and animal feed, to the use for cosmetics, therapeutics and energy. Moringa tree and vetiver grass features, capabilities and applications were explored through a literature review. The suitability of these plants for the bioenergy industry products is evidenced, namely for bioethanol, biogas and biodiesel, given the lignocellulosic biomass content of these plants and characteristics of moringa seed oil.

View Article and Find Full Text PDF

This work proposes a new sustainability assessment framework aiming to compare selected options of biorefineries subject to provide the same services to a community. At this end, a concept of biorefinery-centered system helps to develop a joint resources and policy-oriented comparison. When an option of biorefinery cannot provide the given amounts of certain services from its own production, it complements its supply portfolio by purchasing the lacking amounts from complementary and conventional production systems.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) patients present specific bone and mineral metabolism disturbances, which account for important morbidity and mortality. The term renal osteodystrophy, classically used for the nomination of CKD-associated bone disorder, has been limited to the histologic description of bone lesions, requiring the use of bone biopsy. Biochemical markers and imaging tools do not adequately predict the complex bone changes that are observed in renal osteodystrophy.

View Article and Find Full Text PDF

This study used a rat subcutaneous implantation model to investigate gradual in situ pore formation in a self-regulating degradable chitosan-based material, which comprises lysozyme incorporated into biomimetic calcium phosphate (CaP) coatings at the surface to control the scaffold degradation and subsequent pore formation. Specifically, the in vivo degradation of the scaffolds, the in situ pore formation, and the tissue response were investigated. Chitosan or chitosan/starch scaffolds were studied with and without a CaP coating in the presence or absence of lysozyme for a total of six experimental groups.

View Article and Find Full Text PDF

Previous studies have shown that alpha-amylase and lipase are capable of enhancing the degradation of fiber meshes blends of starch and poly(epsilon-caprolactone) (SPCL) under dynamic conditions, and consequently to promote the proliferation and osteogenic differentiation of bone marrow stromal cells (MSCs). This study investigated the effect of flow perfusion bioreactor culture in combination with enzymes on the osteogenic differentiation of MSCs. SPCL fiber meshes were seeded with MSCs and cultured with osteogenic medium supplemented with alpha-amylase, lipase, or a combination of the two for 8 or 16 days using static or flow conditions.

View Article and Find Full Text PDF

This study aims to further the understanding of nanoscale structures relevant for cellular recognition on contact and interaction with natural-based materials. The correlation between surface characteristics and protein adsorption from unitary and complex protein systems was investigated with respect to altering the bulk chemistry of the substrate material. Polymeric blends of starch and cellulose acetate, polycaprolactone (SPCL) and ethylene vinyl alcohol (SEVA-C) were used.

View Article and Find Full Text PDF

Chitosan blends with synthetic biodegradable polymers have been proposed for various biomedical applications due to their versatile mechanical properties and easier processing. However, details regarding the main surface characteristics that may benefit from the blending of these two types of materials are still missing. Hence, this work aims at investigating the surface properties of chitosan-based blends, illustrating the way these properties determine the material-proteins interactions and ultimately the behavior of osteoblast-like cells.

View Article and Find Full Text PDF

The effect of oxygen-based radio frequency glow discharge (rfGD) on the surface of different starch-based biomaterials (SBB) and the influence of proteins adsorption on modulating bone-cells behavior was studied. Bovine serum albumin, fibronectin and vitronectin were used in single and complex protein systems. RfGD-treated surfaces showed to increase in hydrophilicity and surface energy when compared to non-modified SBB.

View Article and Find Full Text PDF

This study reports on the production of chitosan fibers and 3-D fiber meshes for the use as tissue engineering scaffolds. Both structures were produced by means of a wet spinning technique. Maximum strain at break and tensile strength of the developed fibers were found to be 8.

View Article and Find Full Text PDF