Fast, efficient public health actions require well-organized and coordinated systems that can supply timely and accurate knowledge. Public databases of pathogen genomic data, such as the International Nucleotide Sequence Database Collaboration (INSDC), have become essential tools for efficient public health decisions. However, these international resources began primarily for academic purposes, rather than for surveillance or interventions.
View Article and Find Full Text PDFWe have adopted an open bioinformatics ecosystem to address the challenges of bioinformatics implementation in public health laboratories (PHLs). Bioinformatics implementation for public health requires practitioners to undertake standardized bioinformatic analyses and generate reproducible, validated and auditable results. It is essential that data storage and analysis are scalable, portable and secure, and that implementation of bioinformatics fits within the operational constraints of the laboratory.
View Article and Find Full Text PDFBackground: The de novo assembly of raw sequence data is key in metagenomic analysis. It allows recovering draft genomes from a pool of mixed raw reads, yielding longer sequences that offer contextual information and provide a more complete picture of the microbial community.
Findings: To better compare de novo assemblers for metagenomic analysis, LMAS (Last Metagenomic Assembler Standing) was developed as a flexible platform allowing users to evaluate assembler performance given known standard communities.
Background: The Public Health Alliance for Genomic Epidemiology (PHA4GE) (https://pha4ge.org) is a global coalition that is actively working to establish consensus standards, document and share best practices, improve the availability of critical bioinformatics tools and resources, and advocate for greater openness, interoperability, accessibility, and reproducibility in public health microbial bioinformatics. In the face of the current pandemic, PHA4GE has identified a need for a fit-for-purpose, open-source SARS-CoV-2 contextual data standard.
View Article and Find Full Text PDFDengue virus (DENV) represents a public health threat and economic burden in affected countries. The availability of genomic data is key to understanding viral evolution and dynamics, supporting improved control strategies. Currently, the use of high-throughput sequencing (HTS) technologies, which can be applied both directly to patient samples (shotgun metagenomics) and to PCR-amplified viral sequences (amplicon sequencing), is potentially the most informative approach to monitor viral dissemination and genetic diversity by providing, in a single methodological step, identification and characterization of the whole viral genome at the nucleotide level.
View Article and Find Full Text PDFis a common skin commensal that has emerged as a pathogen in hospitals, mainly related to medical devices-associated infections. Noteworthy, infection rates by have the tendency to rise steeply in next decades together with medical devices use and immunocompromized population growth. population structure includes two major clonal lineages (A/C and B) that present contrasting pathogenic potentials.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFexpressing serotype 3 has a high virulence and a high case fatality ratio. Most studies of serotype 3 pneumococci have focused on a single lineage, the widespread sequence type 180 (ST180). To evaluate the serotype 3 lineages causing infections in Mexico, we characterized 196 isolates recovered from 1994 to 2017.
View Article and Find Full Text PDFHigh throughput sequencing has been proposed as a one-stop solution for diagnostics and molecular typing directly from patient samples, allowing timely and appropriate implementation of measures for treatment, infection prevention and control. However, it is unclear how the variety of available methods impacts the end results. We applied shotgun metagenomics on diverse types of patient samples using three different methods to deplete human DNA prior to DNA extraction.
View Article and Find Full Text PDFThe pathogenic role of beta-hemolytic Streptococcus dysgalactiae in the equine host is increasingly recognized. A collection of 108 Lancefield group C (n = 96) or L (n = 12) horse isolates recovered in the United States and in three European countries presented multilocus sequence typing (MLST) alleles, sequence types and emm types (only 56% of the isolates could be emm typed) that were, with few exceptions, distinct from those previously found in human Streptococcus dysgalactiae subsp. equisimilis.
View Article and Find Full Text PDF