Comprehensive spatial planning in international waters is key to achieving ocean sustainability.
View Article and Find Full Text PDFThis research investigates pH changes during the green synthesis of ZnO nanoparticles (NPs) and emphasises its importance in their physicochemical, antibacterial, and biological properties. Varying the synthesis pH from 8 to 12 using "" apple extracts neither affected the morphology nor crystallinity of ZnO but impacted NP phytochemical loads. This difference is because alkaline hydrolysis of phytochemicals occurred with increasing pH, resulting in BE-ZnO with distinct phytocargos.
View Article and Find Full Text PDFMarine heatwaves (MHWs) have doubled in frequency since the 1980s and are projected to be exacerbated during this century. MHWs have been shown to trigger harmful algal blooms (HABs), with severe consequences to marine life and human populations. Within this context, this study aims to understand, for the first time, how MHWs impact key biological and toxicological parameters of the paralytic shellfish toxin (PST) producer , a dinoflagellate inhabiting temperate and tropical coastal waters.
View Article and Find Full Text PDFHarmful algal blooms (HABs) are considered one of the main risks for marine ecosystems and human health worldwide. Climate change is projected to induce significant changes in species geographic distribution, and, in this sense, it is paramount to accurately predict how it will affect toxin-producing microalgae. In this context, the present study was intended to project the potential biogeographical changes in habitat suitability and occurrence distribution of three key amnesic shellfish toxin (AST)-producing diatom species (i.
View Article and Find Full Text PDFToxin-producing microalgae present a significant environmental risk for ecosystems and human societies when they reach concentrations that affect other aquatic organisms or human health. Harmful algal blooms (HAB) have been linked to mass wildlife die-offs and human food poisoning episodes, and climate change has the potential to alter the frequency, magnitude, and geographical extent of such events. Thus, a framework of species distribution models (SDMs), employing MaxEnt modeling, was used to project changes in habitat suitability and distribution of three key paralytic shellfish toxin (PST)-producing dinoflagellate species (i.
View Article and Find Full Text PDFThe development of nanoparticles as antimicrobial agents against pathogenic bacteria has emerged as one of the leading global healthcare challenges. In this study, Mg(OH) NPs with controlled morphology and nanometric size, using two distinct counterions, chloride or nitrate, have been synthesized using Rosehip (RH) extract that has privileges beyond conventional chemical and physical methods. Various physicochemical techniques were used to characterize the RH-functionalized Mg-based NPs.
View Article and Find Full Text PDFThe dataset presented in this article contains information about marine Area-Based Management Tools (ABMTs) used to assess their contribution to the United Nations 2030 Sustainable Development Goals. Following the scope of the analysis, ABMTs were identified by scrutinizing international and regional legal sources related to ocean management in the fields of marine conservation, fisheries, deep sea bed mining, underwater natural and cultural heritage, environmental conservation, and marine spatial planning. Legal sources were screened to depict the following characteristics of individual ABMTs: i) management objectives; ii) authorities responsible for delivering such objectives; iii) the system of management and planning entailed in the ABMT including the zoning type; and iv) the specific spatial scope and domain each ABMT refer to in vertical depth and horizontal domain.
View Article and Find Full Text PDFPolymeric platforms obtained by three-dimensional (3D) printing are becoming increasingly important as multifunctional therapeutic systems for bone treatment applications. In particularly, researchers aim to control bacterial biofilm on these 3D-platforms and enhance re-growing bone tissue, at the same time. This study aimed to fabricate a 3D-printed polylactic acid platform loaded with hydroxyapatite (HA), iron oxide nanoparticles (IONPs) and an antibiotic (minocycline) with tuneable properties and multistimuli response.
View Article and Find Full Text PDFThe development of biomaterials that mimicking the hydroxyapatite nanoparticles existent in the immature bone tissue is crucial, especially to accelerate the bone remodeling and regeneration. In this work, it was developed for the first time, hydroxyapatite nanoparticles (NPs) incorporating citrate and zinc (cit-Zn-Hap) in their composition towards a one-step hydrothermal procedure. For comparison purposes, hydroxyapatite NPs incorporating only zinc (Zn-Hap) or citrate (cit-Hap), as well as hydroxyapatite without any of these elements (Hap) were synthesised.
View Article and Find Full Text PDFZinc coated with nanostructured ZnO flowers has received increasing attention as a versatile biomaterial for medical applications. Whatsoever, the potential of these materials to meet specific medical requirements must be explored. Despite in its infancy, surface functionalization is the key strategy to achieve this goal.
View Article and Find Full Text PDFPeriodontal diseases remain a challenge due to a complex interplay of factors involving a chronic inflammatory activation and bacteria internalization in periodontal cells. In this work, chitosan-nanoparticles loaded with minocycline (MH-NPs), a tetracycline with antimicrobial and anti-inflammatory effects, were developed for in situ delivery in the periodontal milieu aiming to improve drug effectiveness. A general cytocompatibility evaluation and a detailed approach to address the cellular uptake process, trafficking pathways and the modulation of relevant inflammatory gene expression was conducted using human gingival fibroblasts.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2019
3D-printing and additive manufacturing can be powerful techniques to design customized structures and produce synthetic bone grafts with multifunctional effects suitable for bone repair. In our work we aimed the development of novel multifunctionalized 3D printed poly(lactic acid) (PLA) scaffolds with bioinspired surface coatings able to reduce bacterial biofilm formation while favoring human bone marrow-derived mesenchymal stem cells (hMSCs) activity. For that purpose, 3D printing was used to prepare PLA scaffolds that were further multifunctionalized with collagen (Col), minocycline (MH) and bioinspired citrate- hydroxyapatite nanoparticles (cHA).
View Article and Find Full Text PDFZnO nanoparticles (NPs) are arising as promising novel antibiotics toward device-related infections. The surface functionalization of Zn, a novel resorbable biomaterial, with ZnO NPs could present an effective solution to overcome such a threat. In this sense, the antibacterial and antibiofilm activity of nano- and microsized ZnO coatings was studied against clinically relevant bacteria, methicillin resistant Staphylococcus aureus (MRSA).
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2017
Flowered coatings composed by ZnO crystals were successfully electrodeposited on Zn-Mg alloys. The distinct coatings morphologies were found to be dependent upon the solid interfaces distribution, with the smaller number of bigger flowers (ø 46μm) obtained on Zn-Mg alloy containing 1wt.% Mg (Zn-1Mg) contrasting with the higher number of smaller flowers (ø 38μm) achieved on Zn-Mg alloy with 2wt.
View Article and Find Full Text PDFRejection and colonization by microbes are two problematic issues that often require the surgical removal of medical implants with increased risks for patients. In this work it is shown that functionalization of Zn surfaces with ZnO-nanostructured 'Anastacia' flowers (NAF) resulted in improved biomaterials that can potentially overcome these important drawbacks, which can further boost the use of Zn in biomedical implants. The in vitro degradation of NAF-coated Zn under simulated physiological conditions resulted in the formation of a biomimetic corrosion layer rich in a hydroxyapatite analogue that, being an important bone component, may potentially decrease implant rejection.
View Article and Find Full Text PDF