To survive, individuals must learn to associate cues in the environment with emotionally relevant outcomes. This association is partially mediated by the nucleus accumbens (NAc), a key brain region of the reward circuit that is mainly composed by GABAergic medium spiny neurons (MSNs), that express either dopamine receptor D1 or D2. Recent studies showed that both populations can drive reward and aversion, however, the activity of these neurons during appetitive and aversive Pavlovian conditioning remains to be determined.
View Article and Find Full Text PDFDaily, individuals select actions based on cost-benefit to allocate resources into goal-directed actions. Different brain regions coordinate this complex decision, including the nucleus accumbens (NAc), anterior cingulate cortex (ACC), and ventral tegmental area (VTA). In utero exposure to synthetic glucocorticoids (iuGC), such as dexamethasone, triggers prominent motivation deficits but the impact of this exposure in the ACC-NAc and/or ACC-VTA circuits is unknown.
View Article and Find Full Text PDF