The first line of active defense in plants is triggered by invariant microbial epitopes known as pathogen-associated molecular patterns (PAMPs). Perception of PAMPs by receptors activates a plethora of reactions ending in PAMP-triggered immunity (PTI), which contributes to broad-spectrum resistance. Here, we report a homologous triplet of U-box type E3 ubiquitin ligases (PUBs), PUB22, PUB23, and PUB24 in Arabidopsis, that act as negative regulators of PTI in response to several distinct PAMPs.
View Article and Find Full Text PDFSGT1 (for suppressor of G2 allele of skp1) and RAR1 (for required for Mla12 resistance) are highly conserved eukaryotic proteins that interact with the molecular chaperone HSP90 (for heat shock protein90). In plants, SGT1, RAR1, and HSP90 are essential for disease resistance triggered by a number of resistance (R) proteins. Here, we present structural and functional characterization of plant SGT1 proteins.
View Article and Find Full Text PDFDisease resistance in plants requires the activation of defense signaling pathways to prevent the spread of infection. The protein Required for Mla12 Resistance (RAR1) is a component of such pathways, which contains cysteine- and histidine-rich domains (CHORDs) that bind zinc. CHORDs are 60 amino acid domains, usually arranged in tandem, found in almost all eukaryotes, where they are involved in processes ranging from pressure sensing in the heart to maintenance of diploidy in fungi, and exhibit distinct protein-protein interaction specificity.
View Article and Find Full Text PDFInnate immunity signaling pathways in both animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. An Arabidopsis MAPK cascade (MEKK1, MKK4/MKK5, and MPK3/MPK6) has been proposed to function downstream of the flagellin receptor FLS2 based on biochemical assays using transient overexpression of candidate components. To genetically test this model, we characterized two mekk1 mutants.
View Article and Find Full Text PDFA highly conserved eukaryotic protein SGT1 binds specifically to the molecular chaperone, HSP90. In plants, SGT1 positively regulates disease resistance conferred by many Resistance (R) proteins and developmental responses to the phytohormone, auxin. We show that silencing of SGT1 in Nicotiana benthamiana causes a reduction in steady-state levels of the R protein, Rx.
View Article and Find Full Text PDFThe polymorphic barley (Hordeum vulgare) Mla locus harbors allelic race-specific resistance (R) genes to the powdery mildew fungus Blumeria graminis f sp hordei. The highly sequence-related MLA proteins contain an N-terminal coiled-coil structure, a central nucleotide binding (NB) site, a Leu-rich repeat (LRR) region, and a C-terminal non-LRR region. Using transgenic barley lines expressing epitope-tagged MLA1 and MLA6 derivatives driven by native regulatory sequences, we show a reversible and salt concentration-dependent distribution of the intracellular MLA proteins in soluble and membrane-associated pools.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2003
RAR1 and its interacting partner SGT1 play a central role in plant disease resistance triggered by a number of resistance (R) proteins. We identified cytosolic heat shock protein 90 (HSP90), a molecular chaperone, as another RAR1 interacting protein by yeast two-hybrid screening. RAR1 interacts with the N-terminal half of HSP90 that contains the ATPase domain.
View Article and Find Full Text PDFLack of the barley (Hordeum vulgare) seven-transmembrane domain MLO protein confers resistance against the fungal pathogen Blumeria graminis f. sp. hordei (Bgh).
View Article and Find Full Text PDF