Epiphytic bromeliads might experience drought after a few hours without water, which is especially critical during early life stages. Consequently, juvenile epiphytic bromeliads probably rely on short-term activation of drought tolerance strategies, although the biochemical processes involved are still poorly understood. In this study, we aimed to evaluate the short-term drought response of juvenile plants of the epiphytic bromeliad Acanthostachys strobilacea (Schult.
View Article and Find Full Text PDFTemperature is one of the main environmental factors that affect plant metabolism. Considering that plants are sessile, their survival depends on the efficient activation of resistance responses to thermal stress. In this comprehensive review, we discuss recent work on rapid biochemical and physiological adjustments, herein referred to as those occurring during the first few hours or a few days after the beginning of the change in the ambient temperature.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
May 2017
Tillandsia usneoides is an aerial epiphytic bromeliad that absorbs water and nutrients directly from the atmosphere by scales covering its surface. We expanded the use of this species as a broader biomonitor based on chemical and structural markers to detect changes in air quality. The usefulness of such comprehensive approach was tested during the construction and opening of a highway (SP-21) in São Paulo State, Brazil.
View Article and Find Full Text PDFJuvenile plants of epiphytes such as bromeliads are highly prone to dehydration under drought conditions. It is likely that young epiphytes evolved mostly metabolic strategies to resist drought, which may include the plastic modulation of the enzymatic antioxidant system and crassulacean acid metabolism (CAM). Few studies have investigated such strategies in juvenile epiphytes, although such research is important to understand how these plants might face drought intensification derived from potential climatic alterations.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2016
Tillandsia usneoides is an aerial epiphytic bromeliad that absorbs water and nutrients directly from the atmosphere by scales covering its surface. We expanded the use of this species as a broader biomonitor based on chemical and structural markers to detect changes in air quality. The usefulness of such comprehensive approach was tested during the construction and opening of a highway (SP-21) in São Paulo State, Brazil.
View Article and Find Full Text PDFNidularium minutum is a tropical bromeliad that grows in natural environment with temperatures ranging from 2 to 30 °C. In the present work we cultivated this species in vitro at 5, 10, 15, and 25 °C for 3 and 6 months aiming at assessing biochemical and morphological responses that allow its survival under low temperatures. No survival was observed for plants cultured constantly at 5 °C and the lowest biometric parameters were found for those grown at 10 °C.
View Article and Find Full Text PDF