Publications by authors named "Catalina Peptu"

Due to their indisputable biocompatibility and abundant source, biopolymers are widely used to prepare hydrogels for skin tissue engineering. Among them, cellulose is a great option for this challenging application due to its increased water retention capacity, mechanical strength, versatility and unlimited availability. Since algae are an unexploited source of cellulose, the novelty of this study is the decellularization of two different species, freshly collected from the Black Sea coast, using two different chemical surfactants (sodium dodecyl sulphate and Triton X-100), and characterisation of the resulted complex biopolymeric 3D matrices.

View Article and Find Full Text PDF
Article Synopsis
  • Miscarriage refers to losing a pregnancy before 24 weeks, with progesterone administration significantly reducing premature birth risks.
  • Novel hybrid hydrogels made from chitosan, hyaluronic acid, and poly(-isopropylacrylamide) were developed for vaginal delivery of progesterone and showed positive characteristics including biocompatibility and controlled release.
  • The study found that these hydrogels are effective for potentially delivering progesterone safely and efficiently, with promising results in maintaining cell growth and biodegradability.
View Article and Find Full Text PDF

Enrofloxacin (ENR), a member of the fluoroquinolone class of antibiotics, is widely used in veterinary medicine to treat bacterial infections. Like many antibiotics, ENR has limited water solubility and low bioavailability. To address these challenges, drug formulations using solid dispersions, nanosuspensions, surfactants, cocrystal/salt formation, and inclusion complexes with cyclodextrins may be employed.

View Article and Find Full Text PDF

(1) Background: We aim to develop novel gel formulations for transdermal drug delivery systems in acute and inflammatory pain therapy. (2) Methods: We induced inflammation by the injection of λ-carrageenan on the hind paw of 80 Wistar male rats. The animals were randomized into eight groups of 10 rats each: C (placebo gel), E (EMLA), L (lidocaine 2%), L-CD (lidocaine + cyclodextrin 2.

View Article and Find Full Text PDF

Nanotechnology is the science of creating materials at the nanoscale by using various devices, structures, and systems that are often inspired by nature. Micro- and nanoparticles (MPs, NPs) are examples of such materials that have unique properties and can be used as carriers for delivering drugs for different biomedical applications. Chitosan (CS) is a natural polysaccharide that has been widely studied, but it has a problem with low water solubility at neutral or basic pH, which limits its processability.

View Article and Find Full Text PDF

Background And Objectives: The purpose of our study was to obtain and characterize carrier systems in different sizes that can affect oral absorption, since the mechanisms of liposome absorption are not yet fully understood. From stomach to the small intestine, liposomes can be gradually destroyed. Understanding the factors that affect oral absorption leads to developing safe and effective nanosystems to improve the oral delivery of therapeutics.

View Article and Find Full Text PDF

As key enablers of Industry 4.0 and Internet of Things, sensors are among the first devices which are to encounter fast physical transformation (from rigid to flexible) as of large-scale utilization of printing technologies. In order to step-up this process, adaptation of conventional fabrication technologies (based on metallization) employed in sensors' development should be tested and demonstrated.

View Article and Find Full Text PDF

Polymer networks based on cyclodextrin and polyethylene glycol were prepared through polyaddition crosslinking using isophorone diisocyanate. The envisaged material properties are the hydrophilic character, specific to PEG and cyclodextrins, and the capacity to encapsulate guest molecules in the cyclodextrin cavity through physical interactions. The cyclodextrin was custom-modified with oligocaprolactone to endow the crosslinked material with a hydrolytically degradable character.

View Article and Find Full Text PDF

The aim of the present work was to obtain drug-loaded hydrogels based on combinations of dextran, chitosan/gelatin/xanthan, and poly (acrylamide) as a sustained and controlled release vehicle of Doxorubicin, a drug used in skin cancer therapy that is associated with severe side effects. Hydrogels for use as 3D hydrophilic networks with good manipulation characteristics were produced using methacrylated biopolymer derivatives and the methacrylate group's polymerization with synthetic monomers in the presence of a photo-initiator, under UV light stimulation (365 nm). Transformed infrared spectroscopy analysis (FT-IR) confirmed the hydrogels' network structure (natural-synthetic composition and photocrosslinking), while scanning electron microscopy (SEM) analysis confirmed the microporous morphology.

View Article and Find Full Text PDF

Chitosan (CS) crosslinking has been thoroughly investigated, but the chemical reactions leading to submicronic hydrogel formulations pose problems due to various physical/chemical interactions that limit chitosan processability. The current study employs the chemical modification of chitosan by Michael addition of poly (ethylene glycol) methyl ether acrylate (PEGA) to the amine groups to further prepare chitosan particulate hydrogels (CPH). Thus, modified CS is subjected to a double crosslinking, ionic and covalent, in water/oil emulsion.

View Article and Find Full Text PDF

The influence of the hydroxyl groups (OH) type on the polyaddition processes of isocyanates represents a critical approach for the design of multicomponent polyurethane systems. Herein, to prove the effect of hydroxyl nature on both the isocyanate-OH polyaddition reactions and the structure/properties of the resulting networks, two structurally different cyclodextrins in terms of the primary and secondary groups' ratio were analyzed, namely native β-cyclodextrin (CD) and its derivative esterified to the primary hydroxyl groups with oligolactide chains (CDLA). Thus, polyurethane hydrogels were prepared via the polyaddition of CD or CDLA to isophorone diisocyanate polyethylene glycol-based prepolymers (PEG-(NCO)).

View Article and Find Full Text PDF

New hydrogels films crosslinked with epichlorohydrin were prepared based on alginates and carboxymethyl cellulose with properties that recommend them as potential drug delivery systems (e.g., biocompatibility, low toxicity, non-immunogenicity, hemostatic activity and the ability to absorb large amounts of water).

View Article and Find Full Text PDF

The aim of this study is to offer a comprehensive view on drug release from hydrogel, from both an experimental and a theoretical point of view. Aiming to benefit cyclodextrins' properties (not irritant; stable; able to modify the physical, chemical and biological properties of active compounds; accessible at low prices) and those of carrageenan polysaccharide (antitumor, immunomodulatory, antihyperlipidemic, anticoagulant, biocompatibility, biodegradability), original hydrogel films based on beta cyclodextrin and kappa carrageenan using epichlorohydrin as crosslinking agent were prepared and characterized from morphological and physical/chemical points of view. The results (morphology, the swelling degree, and the loading/release capacity) proved their potential as carriers for different types of drugs.

View Article and Find Full Text PDF

In this work beclomethasone dipropionate was loaded into liposomes and hyalurosomes modified with mucin to improve the ability of the payload to counteract the oxidative stress and involved damages caused by cigarette smoke in the airway. The vesicles were prepared by dispersing all components in the appropriate vehicle and sonicating them, thus avoiding the use of organic solvents. Unilamellar and bilamellar vesicles small in size (~117 nm), homogeneously dispersed (polydispersity index lower than 0.

View Article and Find Full Text PDF

In the present study, the antitumoral potential of three gel formulations loaded with carbon dots prepared from -hydroxyphthalimide (CD-NHF) was examined and the influence of the gels on two types of skin melanoma cell lines and two types of breast cancer cell lines in 2D (cultured cells in normal plastic plates) and 3D (Matrigel) models was investigated. Antitumoral gels based on sodium alginate (AS), carboxymethyl cellulose (CMC), and the carbomer Ultrez 10 (CARB) loaded with CD-NHF were developed according to an adapted method reported by Hellerbach. Viscoelastic properties of CD-NHF-loaded gels were analyzed by rheological analysis.

View Article and Find Full Text PDF

The aim of the present study is to obtain, for the first time, polymeric nanocarriers based on the chitosan grafted-poly(ethylene glycol) methacrylate derivative. The strategy involves the use of chitosan grafted-poly(ethylene glycol) methacrylate with high solubility in water, obtained via Michael addition, in order to prepare potentially non-toxic micro/nanoparticles (MNPs). By modifying chitosan, its solubility in aqueous media was improved.

View Article and Find Full Text PDF

The high interest in polymers from natural resources prompted us to investigate the use of enzymatically synthesized polyglobalide (PGL) in the preparation of polymer networks with potential applications as biomaterials for drug delivery devices. Polymer networks were obtained under mild conditions by photoinitiated thiol-ene coupling between PGL and a poly(ethylene glycol- co-thiomalate) (PEG-SH) copolymer obtained by polycondensation. The obtained polymer networks were thoroughly characterized by Raman spectroscopy, scanning electron microscopy, titration of thiol groups and elemental analysis.

View Article and Find Full Text PDF

Natural proteins have been extensively studied as matrices for tissue engineering, due to their excellent biocompatibility and biological properties associated with increasing cell proliferation. By generating complex materials, cell and tissue functions can be tailored to obtain a specific direction, according to the medical needs. The aim of this paper was to obtain scaffolds based on collagen, hyaluronan and sericin, with morphology and physical-chemical properties adequate for controlled drug delivery systems.

View Article and Find Full Text PDF

The elaboration of chemically crosslinked hydrogels based on collagen (C), hyaluronanic acid (HA) and sericin (S) with different polymer ratios was investigated by in-situ rheology. This reaction was performed via amide or ester bond reaction activated by carbodiimide, in pure water. Prior to molecule crosslinking, the rheological behaviour of the biopolymers (alone or in mixture) was characterized in a semi-dilute concentration regime.

View Article and Find Full Text PDF

The aim of the present study is to obtain, for the first time, polymer magnetic nanoparticles based on the chitosan-maltose derivative and magnetite. By chemically modifying the chitosan, its solubility in aqueous media was improved, which in turn facilitates the nanoparticles' preparation. Resulting polymers exhibit enhanced hydrophilia, which is an important factor in increasing the retention time of nanoparticles in the blood flow.

View Article and Find Full Text PDF

Some of the most dangerous diseases of the eye are related to the posterior segment. Diseases such as age-related macular degeneration, cytomegalovirus retinitis, diabetic retinopathy, posterior uveitis and retinitis pigmentosa are difficult to treat using classical methods because of the many internal barriers of the eye which affect the drug efficiency. In this review, we will summarize the main research directions in the field of medicamentous treatment of posterior eye disorders belonging to the controlled drug delivery concept.

View Article and Find Full Text PDF

The paper focuses on the advances in the field of pain treatment by transdermal delivery of specific drugs. Starting from a short description of the skin barrier, the pharmacodynamics and pharmacokinetics including absorption, distribution, action mechanism, metabolism and toxicity, aspects related to the use of pain therapy drugs are further discussed. Most recent results on topical anesthetic agents as well as the methods proved to overcome the skin barrier and to provide efficient delivery of the drug are also discussed.

View Article and Find Full Text PDF

Chitosan gelatin particles could be the ideal candidate for intraocular drug delivery due to their desirable properties. Double crosslinking in double emulsion has been used as an original and reliable method for particles preparation and their morphology has been optimized considering the main synthesis parameters such as polymers ratio, crosslinker amount, stirring speed, tensioactive amount and ionic crosslinking time, respectively. The particles have been analyzed for their physical-chemical properties (swelling degree, drug loading and release capacity, surface characteristics, etc.

View Article and Find Full Text PDF

Aim: To evaluate intraocular biodistribution of fluorescent nanoparticles composed of dexamethasone bound to chitosan after intravitreal administration in rabbit eyes.

Material And Methods: The chitosan and gelatin based nanoparticles were synthetized using a reverse emulsion-double crosslinking technique (ionic and covalent) and then dexamethasone was bound. Two units of 1% suspension of these nanoparticles in saline solution were injected intravitreally into rabbit eyes.

View Article and Find Full Text PDF

Spherical microparticles for encapsulation of drugs for the treatment of diseases, with a diameter ranging between 2 and 4 µm, were obtained by double crosslinking (ionic and covalent) of chitosan and poly(vinyl alcohol) blend in a water-in-oil emulsion. Microparticles characterisation was carried out in terms of structural, morphological and swelling properties in aqueous media. The presence of chitosan in particles composition confers them a pH-sensitive character.

View Article and Find Full Text PDF