The increased CO emissions determined by the cement industry led to continuous and intensive research on the discovery of sustainable raw materials with cementitious properties. One such raw material category is agricultural waste. This study involved research on the effects of corn cob ash and sunflower stalk ash, respectively, on compressive strength measured after 28 days and 3 months, the flexural and splitting tensile strengths, the resistance to repeated freeze-thaw cycles, and on the resistance to chemical attack of hydrochloric acid of the concrete.
View Article and Find Full Text PDFThe use of plant ash as a sustainable cementitious material in concrete composition is a widely researched subject in the construction domain. A plant studied so far more for its thermal insulation properties, sunflower, was analyzed in this study with regard to its ash effects on the concrete composition. The present research aimed to analyze the effects of a 2.
View Article and Find Full Text PDFThe effects of the fly ash and of the sunflower stalks and corn cobs within a cement-matrix composite were studied under the aspects of density, compressive strength, splitting tensile strength, elasticity modulus, and resistance to repeated freeze-thaw cycles. In the research were developed 20 recipes of cement-based composite, including the reference composite. Fly ash was used as partial cement replacement (10, 20 and 30% by volume), and the vegetal aggregates made by corn cobs and sunflower stalks as partial replacement of the mineral aggregates (25 and 50% by volume).
View Article and Find Full Text PDFConcrete, the most common material in the building industry, involves the use of mineral aggregates that represent an exhaustible resource, despite their large availability. For a series of applications, these mineral aggregates can be replaced by vegetal ones, which represent an easy renewable natural resource. In this study, two types of vegetal raw materials, namely sunflower stalks and corn cobs, were used in developing 10 compositions of ecological microconcrete, with different percentages involved: 20%, 35%, 50%, 65% and 80%; they were analyzed from the perspectives of density, compressive strength, splitting tensile strength, resistance to repeated freeze-thaw cycles, modulus of elasticity and thermal conductivity.
View Article and Find Full Text PDF