Publications by authors named "Catalina Meyer"

Background And Purpose: Chronic heart failure, a progressive disease with limited treatment options currently available, especially in heart failure with preserved ejection fraction (HFpEF), represents an unmet medical need as well as an economic burden. The development of a novel therapeutic to slow or reverse disease progression would be highly impactful to patients and society. Relaxin-2 (relaxin) is a human hormone regulating cardiovascular, renal, and pulmonary adaptations during pregnancy.

View Article and Find Full Text PDF

Urocortin-1 (UCN1) is a member of the corticotropin releasing hormone (CRH) family of peptides that acts through CRH-receptor 1 (CRHR1) and CRH-receptor 2 (CRHR2). UCN1 can induce the adrenocorticotropin hormone and downstream glucocorticoids through CRHR1 and promote beneficial metabolic effects through CRHR2. UCN1 has a short half-life and has been shown to improve experimental autoimmune disease.

View Article and Find Full Text PDF

Purpose: Combination strategies leveraging chemotherapeutic agents and immunotherapy have held the promise as a method to improve benefit for patients with cancer. However, most chemotherapies have detrimental effects on immune homeostasis and differ in their ability to induce immunogenic cell death (ICD). The approval of pemetrexed and carboplatin with anti-PD-1 (pembrolizumab) for treatment of non-small cell lung cancer represents the first approved chemotherapy and immunotherapy combination.

View Article and Find Full Text PDF

Disruption of the gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect.

View Article and Find Full Text PDF

Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase.

View Article and Find Full Text PDF

Lafora disease is a fatal, progressive myoclonus epilepsy caused in ~90% of cases by mutations in the EPM2A or EPM2B genes. Characteristic of the disease is the formation of Lafora bodies, insoluble deposits containing abnormal glycogen-like material in many tissues, including neurons, muscle, heart and liver. Because glycogen is important for glucose homeostasis, the aberrant glycogen metabolism in Lafora disease might disturb whole-body glucose handling.

View Article and Find Full Text PDF

Approximately 90% of cases of Lafora disease, a fatal teenage-onset progressive myoclonus epilepsy, are caused by mutations in either the EPM2A or the EPM2B genes that encode, respectively, a glycogen phosphatase called laforin and an E3 ubiquitin ligase called malin. Lafora disease is characterized by the formation of Lafora bodies, insoluble deposits containing poorly branched glycogen or polyglucosan, in many tissues including skeletal muscle, liver, and brain. Disruption of the Epm2b gene in mice resulted in viable animals that, by 3 months of age, accumulated Lafora bodies in the brain and to a lesser extent in heart and skeletal muscle.

View Article and Find Full Text PDF

Objective: Insulin-mediated suppression of hepatic glucose production (HGP) is associated with sensitive intracellular signaling and molecular inhibition of gluconeogenic (GNG) enzyme mRNA expression. We determined, for the first time, the time course and relevance (to metabolic flux) of these molecular events during physiological hyperinsulinemia in vivo in a large animal model.

Research Design And Methods: 24 h fasted dogs were infused with somatostatin, while insulin (basal or 8 x basal) and glucagon (basal) were replaced intraportally.

View Article and Find Full Text PDF

Conversion to glycogen is a major fate of ingested glucose in the body. A rate-limiting enzyme in the synthesis of glycogen is glycogen synthase encoded by two genes, GYS1, expressed in muscle and other tissues, and GYS2, primarily expressed in liver (liver glycogen synthase). Defects in GYS2 cause the inherited monogenic disease glycogen storage disease 0.

View Article and Find Full Text PDF
Article Synopsis
  • - Lafora disease is a severe epilepsy that typically starts in teenagers and leads to neurodegeneration and death within a decade, marked by the accumulation of abnormal glycogen-like structures called Lafora bodies in various tissues.
  • - Around 50% of Lafora disease cases are caused by mutations in the EPM2A gene, which normally helps regulate glycogen phosphate levels through the protein laforin.
  • - Research on mice without laforin shows that over time, glycogen becomes overly phosphorylated and poorly structured, leading to aggregation that interferes with normal glycogen metabolism.
View Article and Find Full Text PDF