Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine-induced systemic antibody profiles are well characterized; however, little is known about whether intranasal mucosal antibodies are induced or can neutralize virus in response to mRNA vaccination.
Objective: We sought to evaluate intranasal mucosal antibody production with SARS-CoV-2 mRNA vaccination.
Methods: SARS-CoV-2-specific IgG and IgA concentrations and neutralization activity from sera and nasal mucosa via nasal epithelial lining fluid (NELF) collection were measured in SARS-CoV-2 mRNA-vaccinated healthy volunteers (N = 29) by using multiplex immunoassays.
Respiratory macrophage subpopulations exhibit unique phenotypes depending on their location within the respiratory tract, posing a challenge to in vitro macrophage model systems. Soluble mediator secretion, surface marker expression, gene signatures, and phagocytosis are among the characteristics that are typically independently measured to phenotype these cells. Bioenergetics is emerging as a key central regulator of macrophage function and phenotype but is often not included in the characterization of human monocyte-derived macrophage (hMDM) models.
View Article and Find Full Text PDFCurr Allergy Asthma Rep
February 2023
Purpose Of Review: Asthma is a heterogenous respiratory disease characterized by airway inflammation and obstruction. However, the causes of asthma are unknown. Several studies have reported microbial and metabolomic dysbiosis in asthmatic patients; but, little is known about the functional role of the microbiota or the host-microbe metabolome in asthma pathophysiology.
View Article and Find Full Text PDF