Ultra-hydrophobic bilayer coatings on a glass surface were fabricated by sol-gel process using hexadecyltrimethoxysilane (CTMS) and tetramethoxysilane (TMOS) (1:4 molar ratio) as precursors. After coating, silica nanoparticles (SiO₂ NPs) functionalized with different mono-alkoxy derivatives (methoxytrimethylsilane, TMeMS; ethoxydimethylvinylsilane, DMeVES; ethoxydimethylphenylsilane, DMePhES; and methoxydimethyloctylsilane, DMeC₈MS) were added, assuring the microscale roughness on the glass surface. Influences of the functionalized SiO₂ NPs and surface morphology on the hydrophobicity of the hybrid films were discussed.
View Article and Find Full Text PDFThe present work is focused on the preparation of biocompatible silica particles from sodium silicate, stabilized by a vesicular system containing oleic acid (OLA) and its alkaline salt (OLANa). Silica nanoparticles were generated by the partial neutralization of oleic acid (OLA), with the sodium cation present in the aqueous solutions of sodium silicate. At the molar ratio OLA/Na⁺ = 2:1, the molar ratio (OLA/OLANa = 1:1) required to form vesicles, in which the carboxyl and carboxylate groups have equal concentrations, was achieved.
View Article and Find Full Text PDFThe present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA). The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration.
View Article and Find Full Text PDFHeterogeneous membranes were obtained by using styrene-acrylonitrile copolymer (SAN) blends with low content of ion-exchanger particles (5wt.%). The membranes obtained by phase inversion were used for the removal of copper ions from synthetic wastewater solutions by electrodialytic separation.
View Article and Find Full Text PDF