Publications by authors named "Catalin Voiniciuc"

Plant cells sequester atmospheric carbon in thick walls containing heterogenous networks of cellulose and hemicelluloses (e.g. xylan and mannan), surrounded by additional polymers.

View Article and Find Full Text PDF

Plant cell wall researchers were asked their view on what the major unanswered questions are in their field. This article summarises the feedback that was received from them in five questions. In this issue you can find equivalent syntheses for researchers working on bacterial, unicellular parasite and fungal systems.

View Article and Find Full Text PDF
Article Synopsis
  • Plant breeding and genetics are crucial for improving crops to meet human needs, particularly in the context of sustainable agriculture that utilizes nitrogen-fixing microorganisms.
  • A study of sorghum varieties identified genetic factors linked to the formation of beneficial aerial roots that support these nitrogen-fixing bacteria, focusing on both environmental and genetic influences.
  • The research included extensive genome analysis and breeding experiments to understand how these traits can be inherited and optimized, aiming to enhance sorghum's ability to naturally acquire nitrogen for better growth.
View Article and Find Full Text PDF

Synthetic biology creates new metabolic processes and improves existing ones using engineered or natural enzymes. These enzymes are often sourced from cells that differ from those in the target plant organ with respect to, e.g.

View Article and Find Full Text PDF

Cell wall synthesis and protein glycosylation require the import of nucleotide diphosphate-sugar conjugates into the Golgi that must be counterbalanced by phosphate (Pi) export. Numerous Golgi nucleotide-sugar transporters have been characterized, but transporters mediating Golgi Pi export remain poorly understood. We used plant and yeast genetics to characterize the role of 2 Arabidopsis (Arabidopsis thaliana) proteins possessing an EXS domain, namely ERD1A and ERD1B, in Golgi Pi homeostasis.

View Article and Find Full Text PDF

Tailoring the structure of cellulose, hemicellulose or pectin in plant cell walls can modulate growth, disease resistance, biomass yield and other important agronomic traits. Recent advances in the biosynthesis of microfibrils and matrix polysaccharides force us to re-examine old assumptions about the assembly and functions of cell wall components. The engineering of living or hybrid materials in microorganisms could be adapted to plant biopolymers or to inspire the development of new plant-based composites.

View Article and Find Full Text PDF

Manganese (Mn2+) is essential for a diversity of processes, including photosynthetic water splitting and the transfer of glycosyl moieties. Various Golgi-localized glycosyltransferases that mediate cell wall matrix polysaccharide biosynthesis are Mn2+ dependent, but the supply of these enzymes with Mn2+ is not well understood. Here, we show that the BIVALENT CATION TRANSPORTER 3 (BICAT3) localizes specifically to trans-cisternae of the Golgi.

View Article and Find Full Text PDF

Arabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes are guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis. Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles in cell wall polysaccharide biosynthesis.

View Article and Find Full Text PDF

Wound healing is a fundamental property of plants and animals that requires recognition of cellular damage to initiate regeneration. In plants, wounding activates a defense response via the production of jasmonic acid and a regeneration response via the hormone auxin and several ethylene response factor (ERF) and NAC domain-containing protein (ANAC) transcription factors. To better understand how plants recognize damage and initiate healing, we searched for factors upregulated during the horticulturally relevant process of plant grafting and found four related DNA binding with one finger (DOF) transcription factors, HIGH CAMBIAL ACTIVITY2 (HCA2), TARGET OF MONOPTEROS6 (TMO6), DOF2.

View Article and Find Full Text PDF

Hemicellulosic polysaccharides built of β-1,4-linked mannose units have been found throughout the plant kingdom and have numerous industrial applications. Here, I review recent advances in the biosynthesis and modification of plant β-mannans. These matrix polymers can associate with cellulose bundles to impact the mechanical properties of plant fibers or biocomposites.

View Article and Find Full Text PDF

Background: The carbohydrate polymers that encapsulate plants cells have benefited humans for centuries and have valuable biotechnological uses. In the past 5 years, exciting possibilities have emerged in the engineering of polysaccharide-based biomaterials. Despite impressive advances on bacterial cellulose-based hydrogels, comparatively little is known about how plant hemicelluloses can be reconstituted and modulated in cells suitable for biotechnological purposes.

View Article and Find Full Text PDF

Despite the vital roles of jasmonoyl-isoleucine (JA-Ile) in governing plant growth and environmental acclimation, it remains unclear what intracellular processes lead to its induction. Here, we provide compelling genetic evidence that mechanical and osmotic regulation of turgor pressure represents a key elicitor of JA-Ile biosynthesis. After identifying cell wall mutant alleles in () with elevated JA-Ile in seedling roots, we found that ectopic JA-Ile resulted from cell nonautonomous signals deriving from enlarged cortex cells compressing inner tissues and stimulating JA-Ile production.

View Article and Find Full Text PDF

Mannan is a class of cell wall polysaccharides widespread in the plant kingdom. Mannan structure and properties vary according to species and organ. The cell walls of cereal grains have been extensively studied due to their role in cereal processing and to their beneficial effect on human health as dietary fiber.

View Article and Find Full Text PDF

While Arabidopsis seed coat epidermal cells have become an excellent genetic system to study the biosynthesis and structural roles of various cell wall polymers, the physiological function of the secreted mucilaginous polysaccharides remains ambiguous. Seed mucilage is shaped by two distinct classes of highly substituted hemicelluloses along with cellulose and structural proteins, but their interplay has not been explored. We deciphered the functions of four distinct classes of cell wall polymers by generating a series of double mutants with defects in heteromannan, xylan, cellulose, or the arabinogalactan protein SALT-OVERLY SENSITIVE 5 (SOS5), and evaluating their impact on mucilage architecture and seed germination during salt stress.

View Article and Find Full Text PDF

Plant cells are surrounded by an extracellular matrix that consists mainly of polysaccharides. Many molecular components involved in plant cell wall polymer synthesis have been identified, but it remains largely unknown how these molecular players function together to define the length and decoration pattern of a polysaccharide. Synthetic biology can be applied to answer questions beyond individual glycosyltransferases by reconstructing entire biosynthetic machineries required to produce a complete wall polysaccharide.

View Article and Find Full Text PDF

Heteromannan (HM) is one of the most ancient cell wall polymers in the plant kingdom, consisting of β-(1-4)-linked backbones of glucose (Glc) and mannose (Man) units. Despite the widespread distribution of HM polysaccharides, their biosynthesis remains mechanistically unclear. HM is elongated by glycosyltransferases (GTs) from the cellulose synthase-like A (CSLA) family.

View Article and Find Full Text PDF

The differentiation of the seed coat epidermal (SCE) cells in Arabidopsis thaliana leads to the production of a large amount of pectin-rich mucilage and a thick cellulosic secondary cell wall. The mechanisms by which cortical microtubules are involved in the formation of these pectinaceous and cellulosic cell walls are still largely unknown. Using a reverse genetic approach, we found that TONNEAU1 (TON1) recruiting motif 4 (TRM4) is implicated in cortical microtubule organization in SCE cells, and functions as a novel player in the establishment of mucilage structure.

View Article and Find Full Text PDF

Cell walls play critical roles in plants, regulating tissue mechanics, defining the extent and orientation of cell expansion, and providing a physical barrier against pathogen attack [1]. Cellulose microfibrils, which are synthesized by plasma membrane-localized cellulose synthase (CESA) complexes, are the primary load-bearing elements of plant cell walls [2]. Cell walls are dynamic structures that are regulated in part by cell wall integrity (CWI)-monitoring systems that feed back to modulate wall properties and the synthesis of new wall components [3].

View Article and Find Full Text PDF

Pectin is a vital component of the plant cell wall and provides the molecular glue that maintains cell-cell adhesion, among other functions. As the most complex wall polysaccharide, pectin is composed of several covalently linked domains, such as homogalacturonan (HG) and rhamnogalacturonan I (RG I). Pectin has widespread uses in the food industry and has emerging biomedical applications, but its synthesis remains poorly understood.

View Article and Find Full Text PDF

Targeted cellular auxin distribution is required for morphogenesis and adaptive responses of plant organs. In Arabidopsis thaliana (Arabidopsis), this involves the prototypical auxin influx facilitator AUX1 and its LIKE-AUX1 (LAX) homologs, which act partially redundantly in various developmental processes. Interestingly, AUX1 and its homologs are not strictly essential for the Arabidopsis life cycle.

View Article and Find Full Text PDF

New technologies reveal the deposition and remodeling of plant cell wall polysaccharides and their impact on plant development.

View Article and Find Full Text PDF

In addition to synthesizing and secreting copious amounts of pectic polymers ( Young , 2008 ), seed coat epidermal cells produce small amounts of cellulose and hemicelluloses typical of secondary cell walls ( Voiniciuc , 2015c ). These components are intricately linked and are released as a large mucilage capsule upon hydration of mature seeds. Alterations in the structure of minor mucilage components can have dramatic effects on the architecture of this gelatinous cell wall.

View Article and Find Full Text PDF